Ho Huu Tho
Senior Member
MrH thử xem lại mấy chỗ bổ sung góp ý của đoạn dịch #25.1 ở đây nhé.
Follow along with the video below to see how to install our site as a web app on your home screen.
Note: This feature may not be available in some browsers.
cam ơn anh ....nhưng theo em cũng ko nên dịch sat wa..hỉu đuọc rùi,,,,với lai kha năng của em cũng co hạn ,,,,ngồi tra tư wa trờii ...
Lignocellulose là sinh khối phong phú nhất và có khả năng tái tạo; sản lượng hàng năm trên toàn thế giới của nó được ước tính vào khoảng 1 × 1010 triệu tấn (Sánchez và Cardona, 2008). Sự chuyển đổi về mặt sinh học của các nguồn nguyên liệu lignocellulose khác nhau như rừng và các bộ phận nông nghiệp, hay mùa màng thu hoạch lignocellulose phục vụ cho sản xuất cồn mang lại nhiều lợi ích nhưng sự phát triển của nó còn bị hạn chế bởi những trở ngại về kinh tế và kỹ thuật (Sánchez và Cardona, 2008). Trong bối cảnh này, một số yếu tố quan trọng nhất để làm giảm giá thành sản xuất cồn là: sử dụng hiệu quả nguyên liệu để thu được sản lượng cồn lớn với năng xuất cao, chất liệu của quá trình chưng cất có nồng độ cồn cao, cũng như sự tích hợp quy trình nhằm làm giảm tiêu thụ năng lượng ([Galbe và Zacchi, 2007] và [Tomás-Pejó và cs, 2008]).#25.3
#25.3
Lignocellulose is the most abundant renewable biomass; its annual production has been estimated in 1 × 1010 MT worldwide (Sánchez and Cardona, 2008). The biological conversion of different lignocellulosic feedstocks such as forest and agricultural residues, or lignocellulosic crops dedicated to ethanol offers numerous benefits but its development is still hampered by economic and technical obstacles (Sánchez and Cardona, 2008). In this context, some of the most important factors to reduce ethanol production cost are: an efficient utilization of the raw material to obtain high ethanol yields, high productivity, high ethanol concentration in the distillation feed, and also process integration in order to reduce the energy demand ([Galbe and Zacchi, 2007] and [Tomás-Pejó et al., 2008]).
Các nghiên cứu về tiền xử lý hiện tại tập trung vào xác định, đánh giá, phát triển và mô tả những hướng tiếp cận có nhiều hứa hẹn để hỗ trợ đắc lực sự thủy phân tiếp theo bằng enzym của sinh khối đã được xử lý với nồng độ enzym thấp hơn và thời gian chuyển hóa ngắn hơn. Nhiều hướng tiếp cận để thực hiện tiền xử lý đã được khảo sát trên nhiều loại nguyên liệu khác nhau và có vài bài báo tổng quan gần đây cung cấp thông tin tổng quát về lĩnh vực này ([Carvalheiro và cs, 2008], [Hendriks và Zeeman, 2009], [Taherzadeh và Karimi, 2008] và [Yang và Wyman, 2008]).#25.4
Current pretreatment research is focused on identifying, evaluating, developing and demonstrating promising approaches that primarily support the subsequent enzymatic hydrolysis of the treated biomass with lower enzyme dosages and shorter bioconversion times. A large number of pretreatment approaches have been investigated on a wide variety of feedstocks types and there are several recent review articles which provide a general overview of the field ([Carvalheiro et al., 2008], [Hendriks and Zeeman, 2009], [Taherzadeh and Karimi, 2008] and [Yang and Wyman, 2008]).
Besides being considered a crucial step in the biological conversion to ethanol, biomass pretreatment represents one of the main economic costs in the process. In fact, it has been described as the second most expensive unit cost in the conversion of lignocellulose to ethanol based on enzymatic hydrolysis preceded by feedstocks cost (Mosier et al., 2005b).
Vì các nguyên liệu lignocellulose khác nhau có các đặc tính lý hóa khác nhau, nên cần áp dụng những công nghệ tiền xử lý thích hợp theo các đặc điểm của sinh khối lignocellulose ở từng nguyên liệu. Hơn nữa, sự lựa chọn một công nghệ tiền xử lý nhất định có tác động lớn đến tất cả các bước tiếp theo của toàn bộ quá trình chuyển đổi như là khả năng bị phân giải của cellulose, sự phát sinh các chất độc có khả năng ức chế nấm men, năng lượng cần thiết cho quy trình tiếp theo và những yêu cầu về xử lý nước thải (Galbe và Zacchi, 2007). Các nghiên cứu khác mô tả một số chỉ số (sự thu hồi pentose, kích cỡ cần thiết của mảnh, nồng độ các chất độc hình thành trong tiền xử lý và tiêu hao năng lượng thấp) như là các yếu tố quyết định của một công nghệ tiền xử lý hiệu quả (Sun và Cheng, 2002).#25.5
Since different lignocellulosic materials have different physico-chemical characteristics, it is necessary to adopt suitable pretreatments technologies based on the lignocellulosic biomass properties of each raw material. Furthermore, the choice of certain pretreatment has a large impact on all subsequent steps in the overall conversion scheme in terms of cellulose digestibility, generation of toxic compounds potentially inhibitory for yeast, stirring power requirements, energy demand in the downstream process and wastewater treatment demands (Galbe and Zacchi, 2007). Other studies describe several parameters (pentose recovery, chip size required, concentration of toxic compounds formed during pretreatment and low energy demand) as deciding factors in an effective pretreatment (Sun and Cheng, 2002).
The purpose of this work is to review the most interesting pretreatment technologies and recent advances for ethanol production from lignocellulose as well as to analyse the interrelated factors between pretreatment, hydrolysis and fermentation.
2. Các yếu tố then chốt để có công nghệ tiền xử lý sinh khối lignocellulose hiệu quả.#25.6
2. Key factors for an effective pretreatment of lignocellulosic biomass
There are several key properties to take into consideration for low-cost and advanced pretreatment process (Yang and Wyman, 2008):
• High yields for multiple crops, sites ages, harvesting times.
Various pretreatments have been shown to be better suited for specific feedstocks. For example, alkaline-based pretreatment methods such as lime, ammonia fiber explosion (AFEX), and ammonia recycling percolation (ARP), can effectively reduce the lignin content of agricultural residues but are less satisfactory for processing recalcitrant substrate as softwoods (Chandra et al., 2007). Acid based pretreatment processes have been shown to be effective on a wide range of lignocellulose substrate, but are relatively expensive (Mosier et al., 2005b).
- Chất rắn qua tiền xử lý có khả năng bị phân giải cao.• Highly digestible pretreated solid.
Cellulose from pretreatment should be highly digestible with yields higher than 90% in less than five and preferably less than 3 days with enzyme loading lower than 10 FPU/g cellulose (Yang and Wyman, 2008).
• No significant sugars degradation.
High yields close to 100% of fermentable cellulosic and hemicellulosic sugars should be achieved through pretreatment step.
• Minimum amount of toxic compounds.
The liquid hydrolyzate from pretreatment must be fermentable following a low-cost, high yield conditioning step. Harsh conditions during pretreatment lead to a partial hemicellulose degradation and generation of toxic compounds derived from sugar decomposition that could affect the proceeding hydrolysis and fermentation steps (Oliva et al., 2003). Toxic compounds generated and their amounts depend on raw material and harshness of pretreatment. Degradation products from pretreatment of lignocellulose materials can be divided into the following classes: carboxylic acids, furan derivatives, and phenolic compounds. Main furan derivates are furfural and
5-hydroxymethylfurfural (HMF) derived from pentoses and hexoses degradation, respectively; (Palmqvist and Hahn-Hägerdal, 2000). Weak acids are mostly acetic and formic and levulinic acids Phenolic compounds include alcohols, aldehydes, ketones and acids (Klinke et al., 2002).
- Làm giảm kích thước sinh khối là không cần thiết.• Biomass size reduction not required.
Milling or grinding the raw material to small particle sizes before pretreatment are energy-intensive and costly technologies.
• Operation in reasonable size and moderate cost reactors.
Pretreatment reactors should be low in cost through minimizing their volume, employing appropriate materials of construction for highly corrosive chemical environments, and keeping operating pressures reasonable.
• Non-production of solid-waste residues.
The chemicals formed during hydrolyzate conditioning in preparation for subsequent steps should not present processing or disposal challenges.
• Effectiveness at low moisture content.
The use of raw materials at high dry matter content would reduce energy consumption during pretreatment.
• Obtaining high sugar concentration.
The concentration of sugars from the coupled operation of pretreatment and enzymatic hydrolysis should be above 10% to ensure an adequate ethanol concentration and to keep recovery and other downstream cost manageable.
- Sự tương thích của quá trình lên men• Fermentation compatibility.
The distribution of sugar recovery between pretreatment and subsequent enzymatic hydrolysis should be compatible with the choice of an organism able to ferment pentoses (arabinose and xylose) in hemicellulose.
• Lignin recovery.
Lignin and other constituents should be recovered to simplify downstream processing and for conversion into valuable co-products (Yang and Wyman, 2008)
• Minimum heat and power requirements.
Heat and power demands for pretreatment should be low and/or compatible with the thermally integrated process.
3. Các yếu tố hạn chế sự thủy phân bằng enzym#25.7
3. Factors limiting enzymatic hydrolysis
The pretreatment is a necessary step to alter some structural characteristics of lignocellulose, increasing glucan and xylan accessibility to the enzymatic attack. As it has been mentioned, these structural modifications of the lignocellulose are highly dependent on the type of pretreatment employed and have a great effect on the enzymatic hydrolysis (Kumar et al., 2009b) and subsequent steps. The choice of pretreatment technology for a particular raw material depends on several factors, some of them directly related to the enzymatic hydrolysis step such as sugar-release patterns and enzymes employed. Thus, the combination of the composition of the substrate, type of pretreatment, and dosage and efficiency of the enzymes used for the hydrolysis have a great influence on biomass digestibility; although the individual impacts of these factors on the enzymatic hydrolysis are still unclear.
Main factors that influence the enzymatic hydrolysis of cellulose in lignocellulosic feedstocks can be divided in two groups: enzyme-related and substrate-related factors, though many of them are interrelated during the hydrolysis process. Composition of the liquid fraction and solid process streams resulting from different pretreatment approaches can be widely different. These differences will have a great influence on the requirements for effective enzymatic saccharification in subsequent processing steps.
#25.8
The reduction of pretreatment severity is sometimes required to reduce economic cost. Low severity factor results in less sugar-release and consequently higher amount and different types of enzymes will be required to achieve high sugar yields from both cellulose and hemicellulose fraction. In this context, development of hemicellulases and other accessory enzymes needed for complete degradation of lignocellulose components has become an important issue. Recent studies show the importance of new balanced enzymatic complexes containing optimal combinations to effectively modify the complex structure of lignocellulosic materials ([García-Aparicio et al., 2007] and [Merino and Cherry, 2007]).
Substrate-related factors limiting enzymatic hydrolysis are directly connected to the pretreatment employed. These factors are described separately although their effect is normally interrelate.
Well, appreciate very much! Many thanks for your contribution.Sự giảm bớt tính chặt chẽ trong quá trình tiền xử lý đôi khi do yêu cầu cắt giảm chi phí kinh tế. Việc này dẫn đến sự giải phóng đường ít hơn và do đó nó đòi hỏi nhiều loại men khác nhau và với số lượng lớn hơn để tạo ra nhiều những sản phẩm đường từ cả thành phần tinh bột và bán tinh bột. Trong điều kiện đó, sự phát triển của Hemicellulase và các enzyme kèm theo khác cần thiết cho sự thủy phân hoàn toàn các thành phần lignocellulose trở thành vấn đề rất quan trọng. Các nghiên cứu gần đây chỉ ra tầm quan trọng của phức hơp enzyme cân bằng mới bao gồm những kết hợp tối ưu cho sự thay đổi có hiệu quả cấu trúc phức hợp của các nguyên liệu lignocellulose. Các tác nhân liên quan đến cơ chất hạn chế sự thủy phân enzyme được kết nối trực tiếp với quá trình tiền xử lý được áp dụng. Những tác nhân này được miêu tả riêng lẻ mặc dù ảnh hưởng của chúng thường quan hệ chặt chẽ với nhau.
Ket qua nghien cuuResults<o></o>
Patterns and Magnitudes of Phenotypic Covariation<o></o>
Average Fisher’s Z transformed Pearson correlations and partial correlations were computed among phalangeal lengths and widths in the autopods of humans and chimpanzees, first for the entire phalangeal dataset, and then partitioned into different regions of the autopods (Table 1). Virtually all Pearson correlations are significantly greater than zero (Tables S1 and S2). More importantly, as predicted, Pearson correlations show substantially stronger covariation (20-50%) among serially homologous traits than in the background level of covariation observed across the entire dataset, although the difference in humans is not statistically significant (Homo p = 0.12, Pan p <0.01). In several cases, especially in Pan, covariation between serially homologous traits is substantially higher than the average covariation evident within each autopod. Furthermore, the partial correlations show that the correlations among serially homologous traits remain strong even after removing the effects of covariation with other traits within and between the autopods. In partial correlations analyses based on morphological traits, the traits that are controlled for (the covariates) often reflect body size-related covariation (Magwene 2001). Hence, our partial correlations data indicate that the increased covariation 13 observed among serially homologous phalangeal traits is substantially above the level expected with variation in body size.<o></o>
<o> </o>Su hiep bien kieu hinh o tinh tinh manh hon so voi con nguoi. Neu lay pho hiep bien cua P. troglodytes tru di cau truc hiep bien cua Pan-Homo LCA va con chau ke tiep cua no la hominin, thi du lieu ve tuong quan (Bang 1) cho thay rang su tien hoa cua tay va chan o cac hominin ban dau duoc dac trung boi su gia tang cac ap luc bien thien so voi cac loai sau do. Tuy nhien, can luu y rang mac du muc do tuyet doi cua su hiep bien giua cac phan tuong dong van con cao o nguoi, nhung chung thap hon ve muc do so voi P. troglodytes vi su hiep bien yeu hon giua cac ngon trong (ngoai ngon cai), dac biet la o cac bien ve chieu rong cua cac dot chi (Hinh 1, Bang S1). Su hiep bien giua cac ray dau tien thi manh o ca 2 loai, dieu do goi y rang: ngon tay cai va ngon chan cai co le co thien huong bi tac dong boi cac ap luc bien doi manh hon so voi cac cac ngon khac. Nhung ap luc nay co the phan anh su khac biet trong cach cac ngon trong va ngon cai phat trien (Montavon et al. 2008). <o></o>Phenotypic covariation among homologous traits is stronger in chimpanzees than in humans. If one substitutes the covariation patterns in P. troglodytes for the covariation structure in the Pan-Homo LCA and its immediate hominin descendants, then the correlations data (Table 1) suggest that the evolution of hands and feet in early hominins was characterized by increased variational constraints relative to later species. Note, however, that while absolute magnitudes of covariation among homologues remain high in H. sapiens, they are lower in magnitude compared to P. troglodytes because of weaker covariation among lateral digits, especially among phalangeal width variables (Figure 1, Table S1). Covariation between the first rays is strong in both species, suggesting the thumb and big toe may be prone to relatively stronger variational constraints than the lateral digits. These constraints could reflect differences in the way the lateral digits and first digits develop (Montavon et al. 2008).<o></o>
Dap ung tien hoa voi su chon loc duoc mo hinh hoa.Evolutionary responses to simulated selection<o></o>
To test the prediction that matching patterns of phenotypic variation in the hand and foot phalanges lead to their correlated evolution, we subjected chimpanzee and human phenotypic VCV matrices to random selection gradient vectors (Δ’s, see Materials and Methods). For each selection vector, the evolutionary response vector, Δz, was divided into two homologous 6-element response vectors, one for the hand and one for the foot. The dot product of the two normalized response vectors measures on a scale of -1 to 1 the degree to which the hand and foot response vectors are parallel in multivariate space. Dot products near 1 imply that the evolutionary response of the hand and foot phalanges to selection is highly collinear,representing parallel evolutionary changes. Conversely, negative dot products indicate that the hand and foot response vectors diverged in multivariate space, reflecting evolutionary divergence in morphology.
Ket qua cua mo hinh phu hop voi du doan rang su hiep bien giua dot tay va chan o Pan va Homo quy dinh dap ung tien hoa cua chung theo quy dao song hanh ve mat kieu hinh (Bang 2). O ca 2 loai, vec to tong trung binh cua vecto dap ung cua tay va chan voi 1000 vecto chon loc ngau nhien co gia tri lon hon 95% vecto tong cua cac vecto ngau nhien 6 yeu to, chi ra rang dap ung tien hoa cua tay va chan song hanh hon mot cach dang ke so voi muc tinh toan duoc trong truong hop ngau nhien. Hon nua, khi gradient cua chon loc dinh huong o tay hoac chan duoc thiet lap o 0, phan anh ngung tre chon loc o chi do, thi vecto tong trung binh tang (Bang 2). Su gia tang nay la bang chung cua dong tien hoa (coevolution) boi vi ngay ca khi 1 chi ko bi tac dong truc tiep cua chon loc thi gia tri trung binh da bien cua no thay doi mot cach tuong quan voi chi khac. <o></o>The results of the simulation support the prediction that covariation between the hand and foot phalanges in Pan and Homo constrains their evolutionary responses along highly parallel trajectories in phenotypic space (Table 2). In both species, the average dot product of the hand and foot response vectors to 1000 random selection vectors is greater than 95% of the dot products among random 6-element vectors, indicating that the hand and foot evolutionary responses are significantly more parallel than expected by chance. Moreover, when directional selection gradients acting on either the hand or foot are set to zero, reflecting relaxed selection on that autopod, the average dot product increases (Table 2). This increase is evidence for coevolution because even when one autopod is not targeted by selection directly, its multivariate mean shifts by association with the other autopod.<o></o>
Hinh 2 minh hoa su phan bo tan so cac vecto tong cua 1000 vecto dap ung o ca 2 loai. Hinh ve nay cung minh hoa cac phan bo tan so cua cac vecto tong giua hai phan cua vecto chon loc (β) tac dong lan luot len ban tay va ban chan. Cac vecto tong cua vecto chon loc thuong duoc phan bo voi gia tri trung binh bang 0, va khoang mot nua vecto tong la am. Noi cach khac, trong mot nua so cac truong hop chon loc duoc mo hinh hoa thi gia tri trung binh nhieu bien o tay va chan duoc “day” theo cac huong khac nhau trong khong gian nhieu chieu. Mac du vay, tuyet dai da so cac dap ung tien hoa cua tay va chan doi voi nhung ap luc chon loc nay van co muc song hanh cao o ca 2 don vi phan loai, nhu duoc minh hoa qua phan bo lech nhieu ve ben trai cua cac tong vecto dap ung (Figure 2, do lech cua vecto chon loc = 0.068, Homo response vector skewness = -2.27, Pan response vector skewness = -3.36). Vi vay, nhu du doan, dap ung tien hoa cua ban tay va chan doi voi ap luc chon loc co xu huong tuong quan duong manh, bat ke huong lua chon nao.Figure 2 illustrates the frequency distribution of the 1000 response vector dot products in both species. The figure also illustrates the frequency distribution of dot products between the two halves of the selection vectors (β) acting on the hand and the foot, respectively. The selection vector dot products are normally distributed with a mean of 0, and approximately half the dot products are negative. In other words, in half the simulated selection episodes, the hand and foot multivariate means are being “pushed” in divergent directions in multivariate space. Even so, the overwhelming majority of hand and foot evolutionary responses to these selection pressures remain highly parallel in both taxa, as illustrated by the extremely left-skewed distribution of response vector dot products (Figure 2, selection vector distribution skewness = 0.068, Homo response vector skewness = -2.27, Pan response vector skewness = - 3.36). Thus, as predicted, the evolutionary response of the hand and foot to selection pressures tends to be highly positively correlated, regardless of the direction of selection.<o></o>
Tai tao lai lich su cua su chon locReconstructing selection history<o></o>
To test the third prediction, that the evolution of fingers and toes was correlated, we used evaluated the likelihood that hand and foot phalanges co-evolved under similar selection pressures, vs. one evolving as a by-product of selection acting on the other. Specifically, we estimated the magnitude and direction of selection required to produce human-like digits from an ancestral population with chimpanzee-like morphology and VCV structure (Table 3, Figure 3). Results show that even though selection pressures acting on homologous traits in the hand and foot mostly have the same direction, all but one of the pressures on the hand of the LCA are weaker than those acting on homologous phalangeal traits in the foot (Figure 3). In fact, the average absolute selection strength acting on foot traits is over twice the average in the hand, even though mean-standardized phenotypic differences (Δz) are similar (Table 3). These differences are especially strong in phalangeal length variables (Figure 3). At the most extreme, the standardized strength of selection on the length of the proximal phalanx in the big toe is over 50 times greater in magnitude than its homolog in the thumb.<o></o>
<o> </o>Hon nua, ap luc chon loc gian tiep o chan co hieu luc lon nhat len chieu dai cua ngon tay, dac biet la ngon tay cai. O ngon tay nay, su thay doi gia tri trung binh do su chon loc tac dong len chieu dai cua dau dot ngon chan lon hon gan 30 lan so voi hieu luc cua su chon loc tac dong truc tiep len ngon tay cai. Boi vay, lich su chon loc tai tao cua ban tay va chan goi y rang mac du cac dot tay o cac hominin ban dau chiu choc loc truc tiep voi mot muc do nao do, nhung nhieu thay doi kieu hinh cua chung trong qua trinh tien hoa hominin co the duoc qui cho su chon loc tac dong len nhung dac diem tuong dong o ban chan.<o></o>Further, indirect selection pressures on the foot had their largest effect on the length of the manual phalanges, particularly the thumb. In this digit, the change in mean attributable to selection acting on the length of the hallux proximal phalanx is almost 30 times larger than the effect of selection acting on the thumb directly. The reconstructed selection histories of the hand and foot thus suggest that although the hand phalanges in early hominins were under direct selection to some extent, more of their phenotypic change over the course of hominin evolution can be attributed to selection acting on homologous traits in the foot.<o></o>