krongno_c6
Senior Member
Effect of bottom clearance on performance of airlift bioreactor in high-density culture of Panax notoginseng cells.
Hu W, Zhong J.
Source
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
Abstract
A fed-batch cultivation of Panax notoginseng cells in a concentric-tube airlift reactor was performed to study the effects of bottom clearance on cell growth and the production of ginseng saponin and polysaccharide. At a bottom clearance of 4.0 cm, the highest cell density of 29.1+/-1.6 g/l by dry weight was obtained, and the accumulation of saponin and polysaccharide also reached a maximum, i.e., 2.39+/-0.43 and 2.73+/-0.40 g/l, respectively. Cell growth and metabolite production were limited at a small (2.5 cm) or large (5.0 cm) bottom clearance. By analyzing the time constants of mixing, mass transfer and oxygen consumption, bulk gas-liquid oxygen transfer was found to be responsible for the growth limitation at a small bottom clearance (2.5 cm). The decrease in cell density at a large bottom clearance (5.0 cm) was related to cell sedimentation at the reactor bottom. This work is beneficial for the scale-up and efficient operation of the airlift reactor in cell cultures.
Hu W, Zhong J.
Source
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
Abstract
A fed-batch cultivation of Panax notoginseng cells in a concentric-tube airlift reactor was performed to study the effects of bottom clearance on cell growth and the production of ginseng saponin and polysaccharide. At a bottom clearance of 4.0 cm, the highest cell density of 29.1+/-1.6 g/l by dry weight was obtained, and the accumulation of saponin and polysaccharide also reached a maximum, i.e., 2.39+/-0.43 and 2.73+/-0.40 g/l, respectively. Cell growth and metabolite production were limited at a small (2.5 cm) or large (5.0 cm) bottom clearance. By analyzing the time constants of mixing, mass transfer and oxygen consumption, bulk gas-liquid oxygen transfer was found to be responsible for the growth limitation at a small bottom clearance (2.5 cm). The decrease in cell density at a large bottom clearance (5.0 cm) was related to cell sedimentation at the reactor bottom. This work is beneficial for the scale-up and efficient operation of the airlift reactor in cell cultures.