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Abstract. The popularity of caffeine as a psychoactive
drug is due to its stimulant properties, which depend on
its ability to reduce adenosine transmission in the brain.
Adenosine A1 and A2A receptors are expressed in the basal
ganglia, a group of structures involved in various aspects
of motor control. Caffeine acts as an antagonist to both
types of receptors. Increasing evidence indicates that the
psychomotor stimulant effect of caffeine is generated by
affecting a particular group of projection neurons located
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in the striatum, the main receiving area of the basal gan-
glia. These cells express high levels of adenosine A2A re-
ceptors, which are involved in various intracellular
processes, including the expression of immediate early
genes and regulation of the dopamine- and cyclic AMP-
regulated 32-kDa phosphoprotein DARPP-32. The pre-
sent review focuses on the effects of caffeine on striatal
signal transduction and on their involvement in caffeine-
mediated motor stimulation.

Key words. Basal ganglia; adenosine; adenosine A2A receptors; immediate early gene; dopamine; dopamine- and
cAMP-regulated phosphoprotein of 32 kDa; motor activity; Parkinson’s disease.

Introduction

The methylxanthine caffeine is the world’s most popular
psychoactive drug. The reason for this popularity, which
crosses age and cultural boundaries, lies in the psychos-
timulant properties of caffeine, combined with the ab-
sence of substantial or clearly documented negative side
effects. Caffeine is contained in coffee, tea, soft drinks and
chocolate. In addition, common over-the-counter drugs
such as aspirin and appetite suppressants are often com-
bined with caffeine. Upon ingestion, caffeine is efficiently
absorbed from the gastrointestinal tract and, because of its
hydrophobic properties, rapidly distributed in the organ-
ism. Overall, the psychostimulant properties of caffeine
are due to its ability to interact with neurotransmission in
different regions of the brain, thereby promoting behav-
ioral functions, such as vigilance, attention, mood and
arousal. These various responses are often interdependent,
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and therefore difficult to assess individually, and some-
times even poorly defined. Among the behavioral effects
produced by caffeine, the ability to enhance motor activ-
ity has received a great deal of attention. Motor activity
can be easily measured and is controlled by relatively well
characterized cerebral circuits. For these reasons, changes
in locomotion often represent the behavioral output of
choice utilized in the quantification of the stimulant prop-
erties of caffeine, as well as in the study of its mechanism
of action. Caffeine-mediated changes in motor activity are
attributable to the ability of this drug to affect neurotrans-
mission within the basal ganglia, a group of subcortical
nuclei involved in various aspects of motor control. The
present review discusses the molecular mechanisms un-
derlying the psychomotor stimulant properties of caffeine,
with special reference to the action of this drug in the basal
ganglia. The therapeutic significance of caffeine-based
therapies in Parkinson’s disease, a frequent neurodegener-
ative illness affecting basal ganglia neurotransmission and
motor function, is also discussed.



Molecular targets for the physiological action 
of caffeine in the brain

Methylxanthines are structurally similar to cyclic nu-
cleotides and have been extensively studied for their abil-
ity to interact with cyclic nucleotide phosphodiesterases
[1].  Caffeine and theophylline act as competitive in-
hibitors of cyclic nucleotide phosphodiesterase isozymes
in various tissues, including the brain [2]. Their affinity
for phosphodiesterases, however, is low, and concentra-
tions in the millimolar range are necessary to attain sig-
nificant effects [3]. Similarly, millimolar concentrations
of caffeine are necessary to mobilize calcium from intra-
cellular stores, an effect mediated via activation of ryan-
odine-sensitive channels [4, 5]. Studies performed in
brain membranes have shown that caffeine inhibits ben-
zodiazepine binding to the g-aminobutyric acid (GABA)A

receptor [6] with an IC50 – 50% inhibition concentration –
of 350–500 mM [7, 8]. Although caffeine has been in-
strumentally important in the study of cyclic nucleotide
phosphodiesterases, ryanodine receptors and GABA re-
ceptors [8, 9], its physiological effects cannot be ac-
counted for by its ability to regulate these intracellular
targets. In fact, a blood concentration of 500 mM caffeine
produces lethal intoxication [10], and even after ingestion
of three cups of coffee (corresponding to about 300 mg of
caffeine), the peak concentration of free caffeine circulat-
ing in the plasma does not exceed 30 mM [11]. 

Caffeine and adenosine transmission

It is now well established that under normal physiological
conditions, the effects exerted in the brain by caffeine de-
pend on its ability to act as an antagonist at adenosine re-
ceptors [12]. Adenosine is a purine that functions as a
general inhibitor of neuronal activity. In spite of its con-
siderable and specific effects produced at the level of the
central nervous system [13], adenosine does not fit the
criteria normally used to define a neurotransmitter. For
instance, adenosine is not accumulated into vesicles, and
it is not released from nerve terminals in a calcium-de-
pendent fashion.

Regulation of adenosine synthesis and release

Adenosine is generated extracellularly as a product of
the breakdown of adenine nucleotides, such as ATP.  A
variety of ecto-nucleotidases dephosphorylate ATP to
AMP, which is then converted to adenosine [14]. Syn-
thesis of adenosine occurs also intracellularly, by means
of a cytoplasmic 5¢-nucleotidase [15] or by hydrolysis of
S-adenosyl-homocysteine [16]. Intracellular adenosine
is converted to AMP by adenosine kinase, or to inosine
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by adenosine deaminase. The Km of the first reaction
(0.2–2 mM) approaches the range of the physiological
concentration of adenosine, which in rat brain is between
25 and 250 nM [17, 18]. Thus, adenosine kinase plays a
prevalent role in regulating the basal levels of intracellu-
lar adenosine [19]. In contrast, the reaction in which
adenosine deaminase converts adenosine into inosine
has a higher Km and is especially important in controlling
the abnormally elevated levels of adenosine produced
during pathophysiological conditions or electrical stimu-
lation (see below; [19, 20]). The extracellular concentra-
tion of adenosine is controlled by means of Na+-depen-
dent equilibrative transporters, which maintain similar
intra- and extracellular concentrations of nucleosides
[21–23]. Under normal conditions, the activity of intra-
cellular adenosine kinase is sufficiently high to maintain
low levels of adenosine, thereby determining an inward
transport of adenosine, which is removed from the extra-
cellular space [17]. However, conditions such as is-
chemia [24], hypoxia [25] or prolonged electrical stimu-
lation [26] augment energy requirements and stimulate
ATP hydrolysis. This, in turn, dramatically raises the in-
tracellular levels of adenosine [27], which is then re-
leased in the extracellular space by the nucleoside equi-
librative transporters. 

Adenosine receptors

Adenosine is produced ubiquitously, and its neuroactive
properties are determined by the presence of specific re-
ceptors in discrete regions of the brain. At present, four
heptahelical, G-protein-coupled receptors for adenosine
have been identified and named A1, A2A, A2B and A3 re-
ceptor [28]. Whereas all four receptors are expressed in
the brain, the affinity for adenosine of the A2B and A3 re-
ceptors is low, and their basal level of activation is negli-
gible [13, 29, 30]. This implies that under normal physio-
logical conditions, caffeine cannot act via blockade of
these receptors. In contrast, adenosine A1 and A2A recep-
tors bind to caffeine with high affinity and are activated
by nanomolar concentrations of adenosine, normally pre-
sent in the brain [17, 18]. It can therefore be concluded
that in resting tissues, the effects of caffeine are mediated
via blockade of adenosine A1 and A2A receptors. 

Adenosine A1 and A2A receptors: transduction
mechanisms and distribution

Initial studies showed that adenosine activated two dis-
tinct types of receptors, which exerted opposite biochem-
ical effects: the A1 type of receptor reduced, whereas the
A2 type of receptor increased, the levels of cyclic AMP
(cAMP) [31, 32]. Subsequent studies have shown that A1



receptors are coupled to pertussis toxin-sensitive Gi and
Go proteins, whose stimulation leads to inhibition of
adenylyl cyclase, activation of K+ channels [33] and inhi-
bition of Ca2+ channels [34]. Adenosine A2A receptors are
instead coupled to Gs and Golf proteins [35], which acti-
vate adenylyl cyclase.
The pattern of distribution of adenosine A1 and A2A re-
ceptors in the brain differs strikingly. The A1 receptor has
a widespread distribution, as shown by radioligand bind-
ing autoradiography [36] and in situ hybridization [37,
38]. Immunohistochemical analysis demonstrates high
levels of A1 receptors in the hippocampal formation, cere-
bral cortex, cerebellum and in numerous hypothalamic
nuclei [39]. Lower levels of A1 receptors are found in the
basal ganglia, where ~40% of the neurons are labeled in
globus pallidus and striatum [39].
At the cellular level, the majority of adenosine A1 recep-
tors are located on presynaptic nerve terminals, where
they mediate the inhibition exerted by adenosine on the
release of neurotransmitters [40], including glutamate
[41–43], dopamine [44] and acetylcholine [45]. These ef-
fects are most likely exerted via cell membrane hyperpo-
larization caused by activation of G-protein-dependent
inwardly rectifying K+ channels and/or via inhibition of
Ca2+ channels [33, 34].
The inhibitory control on neurotransmission exerted by
adenosine, via A1 receptors, is thought to account for the
positive effect produced by caffeine on arousal, vigilance
and attention. Caffeine is likely to stimulate arousal by
blocking the A1 receptor-mediated inhibition of meso-
pontine cholinergic projection neurons involved in the
regulation of cortical activity [46]. The ability of caffeine
and methylxanthines to increase cortical [47, 48] and hip-
pocampal [49, 50] activity has been proposed to mediate
their facilitatory action on vigilance and information pro-
cessing cf. [12]. Recently, in vivo microdialysis studies
showed that administration of caffeine stimulates acetyl-
choline release in the rat prefrontal cortex [51], an effect
that also occurs during sustained attention tasks [52, 53].  
In contrast to the rather ubiquitous distribution of A1 re-
ceptors, the expression of adenosine A2A receptors in the
brain is limited to regions heavily innervated by
dopamine-containing fibers, such as the striatum and the
olfactory tubercle [54–58]. In the striatum, A2A receptors
are highly expressed postsynaptically by a large popula-
tion of medium-sized spiny neurons (cf. below; [58–60]).
These cells play a critical role in the functioning of the
basal ganglia, a group of nuclei involved in the control of
voluntary movements, as well as in motivational, emo-
tional and cognitive aspects of motor behavior. Since one
of the major effects of caffeine as a psychostimulant is a
prolonged increase in motor activity (see below), the
basal ganglia and, particularly, the striatal medium spiny
neurons represent an important model to investigate the
cellular and molecular mechanism of action of this drug. 

General organization of the basal ganglia and control
of motor activity

The basal ganglia form a subcortical station where infor-
mation coming from limbic, prefrontal, oculomotor and
motor cortex is collected, integrated, transferred to ven-
tral tier thalamic nuclei and sent back to the cortex. The
corticostriatal pathway is organized in parallel, segre-
gated circuits, so that specific cortical areas innervate
subregions of the basal ganglia, which feed back on the
same cortical areas, resulting in the execution of selected
motor programs [61].
The striatum is the main receiving area of the basal gan-
glia, and ~95% of all striatal neurons consist of
GABAergic medium spiny neurons. These cells receive a
glutamatergic excitatory input from the cerebral cortex
(see above) and a modulatory input from midbrain
dopaminergic neurons [62–64] (fig. 1). 
In the dorsal striatum, medium spiny neurons give rise to
two major outputs responsible for fine motor control: the
direct pathway, which contains GABA and substance P,
and projects to the substantia nigra pars reticulata/globus
pallidus pars interna (Gpi), and the indirect pathway,
which contains GABA and enkephalins, and projects to
the substantia nigra pars reticulata/Gpi via globus pallidus
pars externa (Gpe; entopeduncular nuclei in rodents) and
subthalamic nucleus. These two pathways exert opposing
effects on movements by controlling the activity of thala-
mocortical neurons. Activation of the direct striato-ni-
gral/Gpi pathway disinhibits thalamocortical neurons and
facilitates motor activity, whereas activation of the indirect
striato-Gpe pathway enhances inhibition on thalamocorti-
cal neurons and reduces motor activity [65] (fig. 1).
Increasing evidence indicates that caffeine exerts its mo-
tor stimulant effect by acting on striatal medium spiny
neurons. In particular, most of the biochemical and be-
havioral effects of caffeine have been related to the abil-
ity of this drug to reduce the inhibition exerted by en-
dogenous adenosine on striatal dopamine transmission.
The following sections deal with the involvement of
dopamine in the functioning of the basal ganglia and on
the interactions between adenosine and dopamine at the
level of striatal projection neurons.

Dopamine and adenosine in the basal ganglia

Dopamine, acting on dopamine D1 and dopamine D2 re-
ceptors, plays a critical role in the regulation of the activ-
ity of striatal medium spiny neurons. Dopamine D1 re-
ceptors are coupled via a Golf protein to stimulation of
adenylyl cyclase and increased production of cAMP [35,
66, 67]. In contrast, dopamine D2 receptors are coupled,
via Gi/Go proteins, to inhibition of adenylyl cyclase and
reduction of cAMP [66].
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It is generally believed that within the dorsal striatum, ac-
tivation of dopamine D1 receptors stimulates the neurons
of the direct pathway, whereas activation of dopamine D2

receptors inhibits the neurons of the indirect pathway
[65]. Because of the opposite control exerted by direct
and indirect pathway on the activity of thalamocortical
neurons (i.e. disinhibition and enhancement of inhibi-
tion, respectively; cf. fig. 1), the overall effect of dopa-
mine is motor stimulation. A large proportion of the stim-
ulant effects produced by substances such as cocaine and
amphetamine are exerted by interfering with the
dopamine transport system, thereby increasing the extra-
cellular concentration of dopamine.
Several studies have shown that adenosine A2A receptors
are highly and selectively expressed by the neurons of the
indirect, striato-Gpe pathway [58–60]. During the last
years it has become clear that most of the psychomotor
stimulant effects of caffeine are mediated via regulation
of the activity of this particular set of striatal projection
neurons. 

Adenosine A2A receptor/dopamine D2 receptor
antagonism on striato-Gpe neurons

A large amount of evidence indicates the existence of a
complex antagonistic relationship between adenosine A2A

and dopamine D2 receptors, in striatal projection neurons
(cf. fig. 2). Studies performed in striatal membrane
preparations show that activation of adenosine A2A recep-
tors reduces the affinity of dopamine D2 receptors for ag-
onists [68, 69]. This intramembrane, receptor-receptor in-
teraction has been proposed to play a critical role in the
responses elicited by activation of adenosine A2A recep-
tors [70]. However, the antagonistic relationship between
A2A and D2 receptors is by no means restricted to the level
of the plasma membrane. As mentioned above, activation
of A2A receptors results in Golf-dependent stimulation of
cAMP production [35, 71], whereas activation of dopa-
mine D2 receptors decreases the production of cAMP
[66]. This leads to opposite regulation of the activity of
cAMP-dependent protein kinase (PKA), which, in turn, is
involved in the control of the state of phosphorylation and
activity of numerous phosphoproteins, including the
dopamine and cAMP-regulated phosphoprotein of 32
kDa (DARPP-32), and transcription factors, such as the
cAMP-response element binding protein (CREB), which
controls the expression of immediate early genes (IEGs)
(cf. fig. 2).
The antagonistic interactions described above result in
opposite regulation of the activity of striato-Gpe neurons
of the indirect pathway, where both A2A and D2 receptors
are highly expressed. This is clearly indicated by studies
showing that the increase in enkephalin messenger RNA
(mRNA) (a specific marker indicating activation of stri-
ato-Gpe neurons [65]) observed in dopamine D2 receptor
knockout mice is counteracted by concomitant genetic in-
activation of adenosine A2A receptors [72]. The ability of
A2A receptors to enhance the activity of striato-Gpe neu-
rons, thereby opposing the inhibitory action exerted on
these cells by dopamine D2 receptors, is further demon-
strated by studies of IEG expression (see below). In addi-
tion, neurochemical studies show that the A2A receptor
agonist, CGS 21680, prevents the decrease in GABA re-
lease produced, in the globus pallidus, by striatal infusion
of a dopamine D2 receptor agonist [73, 74]. In contrast,
blockade of striatal A2A receptors with theophylline po-
tentiates the dopamine D2 receptor-mediated decrease in
GABA release [74].  
Altogether, the above evidence suggests that caffeine
stimulates motor activity by counteracting the inhibitory
control exerted by adenosine A2A receptors on striatal
dopamine D2 transmission. This, in turn, would reduce
the activity of striato-Gpe neurons and ultimately disin-
hibit thalamo-cortical projection neurons (figs 1, 2).
It should be noted that the A2A receptor-mediated regula-
tion of striato-Gpe neurons does not depend completely
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Figure 1. Diagram illustrating the functional organization of the
basal ganglia. The striatum receives an excitatory glutamatergic in-
put (green) from cerebral cortex and a modulatory dopaminergic in-
put (black) from the substantia nigra pars compacta (SNpc).
GABAergic striatal medium spiny neurons innervate either directly
or indirectly [via globus pallidus pars externa (Gpe) and subthala-
mic nucleus (STN)] the substantia nigra pars reticulata (SNpr)/
globus pallidus pars interna (Gpi). Dopamine activates, via D1 re-
ceptors, the direct striato-nigral/Gpi pathway and inhibits, via D2 re-
ceptors, the indirect striato-Gpe pathway. These opposite regula-
tions disinhibit thalamo-cortical glutamatergic neurons and pro-
mote motor activity. Adenosine, via A2A receptors, antagonizes the
inhibitory effect of dopamine D2 receptors on the indirect pathway,
thereby depressing motor activity. Caffeine produces its psychomo-
tor stimulant effect by blocking adenosine A2A receptors. In addi-
tion, caffeine may protect SNpr/Gpi dopaminergic neurons from
glutamate-induced neurotoxicity via disinhibition of GABAergic
Gpe neurons and inhibition of STN neurons (cf. text). Excitatory
(glutamatergic) and inhibitory (GABAergic) inputs are shown in
green and red, respectively. 



on their antagonistic relationship with D2 receptors. Thus,
the stimulant effect exerted by caffeine [72] or by selec-
tive blockade of A2A receptors [75] on motor activity is
still present, albeit reduced, in dopamine D2 receptor-null
mice (but see also [76]). The existence of a dopamine-in-
dependent component in the action of caffeine and
adenosine A2A receptor antagonists is further indicated by
the observation that blockade of A2A receptors stimulates
motor activity in various experimental models of
dopamine-deficient animals (see below and cf. section on
caffeine and Parkinson’s disease). It therefore appears
that endogenous adenosine, via A2A receptors, at least in
part promotes striato-Gpe neuron transmission in a D2 re-
ceptor-independent fashion.

Caffeine and motor activity

The ability of caffeine to enhance motor activity in ex-
perimental animals is well known [12, 77–79] and has
been correlated to its affinity at adenosine receptors [80]
and blockade of tonic adenosine transmission [3, 80, 81].
Recently, evidence has been provided indicating that a
similar mechanism is involved even in the ability of caf-
feine to delay fatigue during exercise [82]. Typically, caf-
feine produces a biphasic stimulation of locomotor activ-
ity. In the rat, a peak effect is observed at doses between

15 and 30 mg/kg [83–85], whereas at the dose of 100
mg/kg caffeine is ineffective, or depressant on locomo-
tion [84–86]. A similar biphasic profile, with low doses
increasing and high doses decreasing locomotor activity,
has been observed in the mouse [87–89].
The locomotor stimulant effect of caffeine has been ini-
tially attributed to blockade of adenosine A1 receptors
[80, 90, 91]. These receptors inhibit dopamine release
[44], and caffeine has been reported to increase extracel-
lular dopamine in the striatum [92, 93]. However, this ef-
fect, which should result in increased locomotion (see
above; cf. fig. 1), is elicited by high concentrations 
(50 mM in the perfusion buffer) [92] or doses (30–
75 mg/kg) of caffeine [93], which, as mentioned above,
do not produce motor stimulation. In a recent study, Soli-
nas et al. [94] have reported that low, but not high, doses
of caffeine increase glutamate and dopamine release in
the ventral striatum, and have proposed that this regula-
tion mediate the biphasic motor stimulant response to
caffeine. This idea, however, has been challenged in an-
other recent report, which shows that caffeine, adminis-
tered in a similar range of doses, does not affect
dopamine release in the ventral striatum [51]. It should
also be noted that whereas the ventral striatum is involved
in the psychomotor effects of cocaine and amphetamine,
caffeine appears to produce its stimulant action indepen-
dent of this brain region [95–97].
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Figure 2. Schematic representation of the antagonistic interactions between adenosine A2A and dopamine D2 receptors, in striato-Gpe pro-
jection neurons. At the plasma membrane level, stimulation of A2A receptors results in decreased affinity of the dopamine D2 receptor for
agonists. At the cytoplasm level, A2A receptors stimulate, whereas D2 receptors inhibit the production of cAMP. This result in opposite reg-
ulation of the state of phosphorylation of DARPP-32 and downstream target proteins involved in the control of the activity of striato-Gpe
neurons. In the nucleus, the opposite regulation of the cAMP/PKA pathway results in opposite regulation of CREB phosphorylation and
IEG expression. Green and red arrows indicate positive and negative regulations, respectively. 



Studies based on the use of selective pharmacological
agents and gene targeting have clearly indicated that
blockade of A2A, rather than A1, receptors is involved in
the stimulant properties of caffeine. Svenningsson et al.
[83] showed that in the rat, administration of SCH
58261, an adenosine receptor antagonist with 100-fold
selectivity for A2A over A1 receptors [98], produced an in-
crease in locomotion comparable to that caused by caf-
feine. In contrast, administration of 1,3-dipropyl-8-cy-
clopentylxanthine (DPCPX; a specific A1 receptor an-
tagonist [99]) did not produce significant changes in
locomotor activity [83]. Similar results have been ob-
tained in the mouse [89, 100–102]. Demonstration of
the specific involvement of A2A receptors in caffeine-me-
diated motor stimulation came from studies performed
in adenosine A2A receptor knockout mice. These animals
showed a decrease in locomotion following administra-
tion of a dose of caffeine (25 mg/kg) that produced mo-
tor stimulation in wild-type mice [103]. The motor de-
pressant effect exerted by caffeine in A2A receptor-null
mice has been proposed to occur via blockade of adeno-
sine A1 receptors [83, 86], an idea supported by the ob-
servation that DPCPX reduces locomotor activity in A2A

receptor knockout mice [89].
The psychomotor stimulant effect of caffeine appears to
be, at least in part, dependent on intact dopaminergic
transmission. Administration of reserpine, which depletes
endogenous monoamines, or a-methyl-p-tyrosine, which
blocks the synthesis of catecholamines, prevents the caf-
feine-induced increase in locomotor activity [79, 104,
105]. Similar results are obtained using dopamine D1 and
D2 receptor antagonists [106]. The ability of a dopamine
D1 receptor antagonist to counteract the motor stimulant
effect of caffeine may seem at first surprising, considering
the selective localization of A2A receptors on striato-Gpe
neurons, which are mostly devoid of D1 receptors. How-
ever, it should be considered that blockade of dopamine
D1 receptors is sufficient to prevent the increase in loco-
motion produced by activation of dopamine D2 receptors
[107]. Thus, a dopamine D1 receptor antagonist should be
able to suppress the motor stimulant effect of caffeine,
which is for the most part (cf. below) exerted via disinhi-
bition of dopamine D2 receptors transmission. 
The requirement of intact dopaminergic transmission for
the psychomotor stimulant action of caffeine is questioned
by studies demonstrating the ability of caffeine or a spe-
cific adenosine A2A receptor antagonist to prevent akine-
sia in reserpinized rodents [108]. Moreover, blockade of
adenosine A2A receptors stimulates motor activity in
dopamine-deficient, 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP)-intoxicated mice [109] and monkeys
[110] (cf. section on caffeine and Parkinson’s disease).
In summary, the psychomotor stimulant effect of low
doses of caffeine, which closely match the amount of
drug normally ingested in beverages and food, is pro-

duced by antagonism at adenosine A2A receptors. Higher
doses of caffeine are ineffective or induce locomotor de-
pression, most likely acting via blockade of adenosine A1

receptors. The ability of caffeine to stimulate motor ac-
tivity via A2A receptor blockade appears to involve
dopamine-dependent, as well as dopamine-independent
mechanisms.

Caffeine effects on striato-Gpe neurons: evidence
from immediate early gene expression studies

Changes in the expression of IEG, such as c-fos, DfosB, c-
jun, junB, junD, arc, zif-268 [or nerve growth factor-in-
ducible (NGFI)-A] and NGFI-B, are generally considered
as markers of changes in neuronal activity and synaptic
transmission. The rapid increase in IEG expression re-
sults in activation of late-response genes involved in plas-
tic and pathological processes, and is generally thought to
occur in concomitance with increased neuronal activity
[111]. Therefore, changes in IEG expression have been
extensively utilized as indicators of the ability of drugs to
affect specific neuronal circuits [112]. For example, both
neuroleptic drugs (e.g. haloperidol), via blockade of
dopamine D2 receptors [113–115], and psychostimulants
(e.g. amphetamine and cocaine), via activation of
dopamine D1 receptors [116, 117], are known to induce c-
fos expression in the striatum. 
It is now well established that the biphasic effect pro-
duced by caffeine on motor activity is paralleled by
biphasic changes in IEG expression at the level of striatal
projection neurons.  Administration of 25 mg/kg of caf-
feine, a dose that induces stimulation of motor activity
[84–86], reduces the mRNA levels for zif-268, NGFI-B
and junB [86]. In contrast, administration of 100 mg/kg
of caffeine, a dose that does not affect locomotion, in-
creases the expression of c-fos, zif-268, NGFI-B, junB, c-
jun and arc [86, 118–120].
Low doses of caffeine decrease IEG expression via block-
ade of adenosine A2A receptors. Thus, administration of
SCH58261 produces a decrease in zif-268 and NGFI-B
similar to that caused by doses of caffeine ranging from
7.5 to 30 mg/kg [83]. Furthermore, the reduction of zif-
268 produced by low doses of caffeine occurs in striato-
Gpe neurons [86], which selectively express A2A recep-
tors [58–60]. In contrast, the stimulation of IEG expres-
sion produced by higher, physiologically less relevant,
doses of caffeine occurs in both striato-nigral/Gpi and
striato-Gpe neurons [86, 118, 119]. This effect, which is
mimicked by administration of DPCPX [83, 119], has
been attributed to blockade of inhibitory presynaptic
adenosine A1 receptors and increase in the release of
dopamine, glutamate and acetylcholine [119], which
would affect IEG expression in both subpopulations of
striatal projection neurons.
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The ability of low doses of caffeine to decrease IEG ex-
pression via antagonism at adenosine A2A receptors is
most likely mediated via inhibition of the cAMP/protein
kinase A (PKA) pathway. Adenosine A2A receptors are
positively coupled to adenylyl cyclase (see above), and
blockade of their tonic activation by caffeine would re-
duce cAMP levels. This, in turn, would decrease PKA ac-
tivity and inhibit the state of phosphorylation and activity
of transcription factors, such as CREB [121], which in-
duces IEG expression by interacting with the calcium/
cAMP response element [122]. 
The regulation of IEG expression by caffeine is depen-
dent on the antagonistic interaction between A2A and
dopamine D2 receptors. Blockade of D2 receptors results
in increased c-fos expression in striato-Gpe neurons [114,
115]. Moreover, treatment with reserpine causes an in-
crease in striatal Fos-like immunoreactivity, which is pre-
vented by administration of quinpirole, a dopamine D2 re-
ceptor agonist [123]. Using reserpine-treated mice, Pol-
lack and Fink [124] showed that methylxanthines, such as
theophylline and the selective A2A receptor antagonist 8-
(3-chlorostyryl)caffeine (CSC), potentiate the reduction
of c-fos expression produced by quinpirole in striato-Gpe
neurons. In the same experimental model, CSC inhibited
D2 receptor antagonist-induced Fos-like immunoreactiv-
ity [125]. These results indicate that blockade of adeno-
sine A2A receptors, such as that produced by low doses of
caffeine, promotes the inhibition exerted by dopamine D2

receptors on the activity of striato-Gpe neurons.
The behavioral and biochemical evidence presented above
indicates that the striato-Gpe neurons of the indirect path-
way are a crucial anatomical target involved in the psy-
chomotor stimulant effect exerted by caffeine. Administra-
tion of low to moderate doses of caffeine is accompanied
by reduced IEG expression in these neurons. Such a re-
duction is an indicator of decreased activity in the indirect
pathway, which, in turn, results in disinhibition of thalamo-
cortical neurons and motor stimulation (cf. fig. 1).
Alterations in IEG expression have been crucial in the
identification of the neuroanatomical substrates involved
in the stimulant effect of caffeine. However, changes in
the levels of Fos and other IEG products occur over a pe-
riod of h and therefore cannot account for the rapid (min)
increase in locomotor activity observed following admin-
istration of caffeine. During recent years, evidence has
been accumulated indicating that the phosphoprotein
DARPP-32 plays a critical role in the acute psychomotor
stimulant response to caffeine.

DARPP-32 as an amplification system for cAMP/
PKA-mediated responses

DARPP-32 is highly expressed in both striato-Gpe and
striato-nigral/Gpi neurons [126], where it acts as a modu-

lator of the cAMP/PKA pathway [127, 128]. Phosphoryla-
tion catalyzed by PKA at Thr34 converts DARPP-32 into a
selective inhibitor of protein phosphatase-1 (PP-1) [129].
Conversely, phosphorylation catalyzed by cyclin-depen-
dent kinase-5 (Cdk-5) at Thr75 converts DARPP-32 into
an inhibitor of PKA [130]. Thus, depending on the site of
phosphorylation, DARPP-32 is able to produce opposing
biochemical effects (i.e. inhibition of protein phosphatase
activity or inhibition of protein kinase activity) (fig. 3). 
The state of phosphorylation of Thr34 and Thr75 appears
to be reciprocally regulated. An increase in Thr75 phos-
phorylation results in decreased phosphorylation at
Thr34, via inhibition of PKA [130, 131]. Conversely,
stimuli that lead to activation of PKA, and increased
phosphorylation at Thr34, produce a concomitant de-
crease in Thr75 phosphorylation [131]. This latter effect
is most likely dependent on the ability of PKA to phos-
phorylate and activate protein phosphatase-2A (PP-2A)
[132, 133], which is responsible for dephosphorylation of
DARPP-32 at Thr75 [130, 131] (fig. 3).
Responses to stimuli that activate the cAMP/PKA path-
way are strongly amplified by concomitant changes in the
state of phosphorylation of DARPP-32 at Thr34 and
Thr75. Increased phosphorylation at Thr34 amplifies the
effects of PKA by reducing dephosphorylation of down-
stream target proteins, through inhibition of PP-1. In ad-
dition, decreased phosphorylation at Thr75 promotes ac-
tivation of the cAMP/PKA pathway by reducing the inhi-
bition exerted by phospho[Thr75]DARPP-32 on PKA
[130] (fig. 3).
DARPP-32 plays a critical role in the functioning of the
basal ganglia, as illustrated by its involvement in striatal
dopaminergic transmission. Activation of dopamine D1 re-
ceptors results in Golf-mediated stimulation of PKA,
which increases phosphorylation of DARPP-32 at Thr34
[134, 135], and decreases phosphorylation at Thr75 [131].
This regulation of DARPP-32 promotes dopamine D1 re-
ceptor-mediated phosphorylation of downstream target
proteins critically involved in the control of the state of ex-
citability of striatal projection neurons, including voltage-
dependent calcium channels [136], glutamate NMDA
[137] and AMPA [138] receptors, and GABAA receptors
[139]. The positive feedback on protein phosphorylation
provided by DARPP-32 appears to be critical for eliciting
full behavioral responses. Thus, the hyperlocomotor effect
of cocaine, a drug which increases Thr34 [140, 141], and
decreases Thr75 [140], phosphorylation via stimulation of
dopamine D1 receptors [141], is stronlgy attenuated in
DARPP-32-deficient mice [128].

DARPP-32, adenosine transmission and caffeine

Stimulation of striatal slices with the A2A receptor ago-
nist, CGS 21680, results in Golf-dependent activation of
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adenylyl cyclase [35], increased cAMP levels and PKA-
mediated phosphorylation of DARPP-32 at Thr34 [135].
These effects most likely occur in striato-Gpe neurons
[135], where CGS 21680 also reduces the phosphoryla-
tion of DARPP-32 at Thr75 [102]. The state of phospho-
rylation of DARPP-32 in striato-Gpe neurons appears to
be determined by the combined tonic activation of adeno-
sine A2A and dopamine D2 receptors, which stimulate and
inhibit the production of cAMP, respectively. Thus, block-
ade of D2 receptors, achieved with the selective antago-
nist eticlopride results in increased phosphorylation of
DARPP-32 at Thr34, through disinhibition of PKA activ-
ity. Furthermore, the effect of eticlopride on DARPP-32
phosphorylation is prevented in adenosine A2A receptor-
null mice [141].
The importance of changes in DARPP-32 phosphoryla-
tion for adenosine transmission has been demonstrated by
studies performed using DARPP-32 knockout mice. In
these animals, the motor depressant effect produced by
administration of CGS 21680 [142] is significantly atten-
uated [102].
Recent evidence shows that caffeine produces a pro-
longed (≥2 h) and dose-dependent increase in the state of
phosphorylation of DARPP-32 at Thr75. The peak effect

of caffeine is reached at the dose of 7.5 mg/kg, which also
produces a sustained increase in motor activity [102]. The
ability of caffeine to increase DARPP-32 phosphoryla-
tion at Thr75 is most likely mediated via blockade of ton-
ically activated adenosine A2A receptors, since adminis-
tration of the selective A2A receptor antagonist, SCH
58261, also increases the levels of phospho [Thr75]
DARPP-32. Furthermore, caffeine appears to increase
DARPP-32 phosphorylation at Thr75 via inhibition of
PP-2A activity, rather than via activation of Cdk-5 [102]. 
The increase in locomotor activity produced in wild-type
mice by a low dose (7.5 mg/kg) of caffeine is strongly at-
tenuated in mice lacking DARPP-32. Similar results are
obtained following administration of SCH 58261, which
also increases motor activity [102]. Thus, the A2A recep-
tor-dependent increase in DARPP-32 phosphorylation at
Thr75 produced by caffeine appears to be critically in-
volved in its stimulant action. 
Based on these results, a molecular mechanism responsi-
ble for the psychomotor stimulant properties of caffeine
has been proposed [102]. According to this mechanism,
caffeine would increase motor activity by blocking
adenosine A2A receptors and reducing tonic activation of
the cAMP/PKA pathway in striato-Gpe neurons. Such a
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Figure 3. Schematic representation of the regulation of DARPP-32 by adenosine and caffeine. Left panel: Adenosine, via A2A receptors,
stimulates adenylyl cyclase and increases the production of cAMP. Activation of PKA results in phosphorylation of Thr34 of DARPP-32
(D32), which is converted into an inhibitor of PP-1. PKA also phosphorylates and activates PP-2A, thereby hastening the dephosphoryla-
tion of DARPP-32 at Thr75 and reducing the inhibition exerted by phosphoThr75-DARPP-32 on PKA. These effects intensify the phos-
phorylation of downstream target proteins produced by adenosine via activation of the cAMP/PKA cascade. Right panel: Caffeine, via
blockade of A2A receptors, reduces the production of cAMP and decreases the activity of PKA. This, in turn, results in diminished phos-
phorylation of DARPP-32 at Thr34 and increased phosphorylation at Thr75. By further reducing the activity of PKA, phosphoThr75-
DARPP-32 provides a positive feedback mechanism able to amplify the inhibition of the cAMP/PKA pathway. Thicker arrows and bars
and black color indicate higher activity or levels. PP-2B, protein phosphatase-2B.



caffeine-mediated inhibition of the cAMP/PKA pathway
would reduce phosphorylation of downstream target pro-
teins, thereby affecting the activity of striato-Gpe neurons
and ultimately enhancing locomotion. The parallel in-
crease in Thr75 phosphorylation would convert DARPP-
32 into an inhibitor of PKA, further reducing phosphory-
lation of target proteins and amplifying the effect of caf-
feine (cf. fig. 3). 
Studies performed in DARPP-32-null mice show that
DARPP-32 prolongs the motor stimulant effect of 7.5
mg/kg of caffeine, but does not affect the response to a
higher dose (15 mg/kg) of the drug. In addition, DARPP-
32 is not involved in the initial increase in motor activity
produced by caffeine, but rather intensifies the late effect
of the drug, as its concentration diminishes. These obser-
vations indicate that the positive feedback loop provided
by DARPP-32 assumes physiological relevance only in
association with submaximal inhibitions of the cAMP/
PKA pathway, produced by relatively low concentrations
of caffeine. When the cAMP/PKA pathway is strongly in-
hibited by high concentrations of caffeine, the additional
reduction of PKA activity provided by phospho [Thr75]
DARPP-32 becomes superfluous.

Caffeine and Parkinson’s disease

Parkinson’s disease is the second most frequent neurode-
generative disorder in people older than 45 years. The
cardinal symptoms of Parkinson’s disease arise from the
degeneration of dopaminergic nigrostriatal neurons of the
basal ganglia and consist of a series of motor disturbances
ranging from resting, tremor and rigidity, to akinesia,
bradykinesia and postural instability. The current therapy
for Parkinson’s disease relies on substitution treatment
with the dopamine precursor, levodopa, which in the ini-
tial phases of the disease effectively reduces the motor
symptoms. Unfortunately, the therapeutic effects of levo-
dopa wane with time, and prolonged use of this drug is
accompanied by the appearance of abnormal involuntary
movements, generally referred to as dyskinesia. 
The lack of dopaminergic input to the medium spiny neu-
rons occurring in Parkinson’s disease is associated with
decreased activity of the striato-nigral/Gpi neurons of the
direct pathway, as indicated by reduced expression of pre-
protachykinin in these cells [65]. In contrast, the expres-
sion of mRNA for preproenkephalin, a selective marker
for striato-Gpe neurons [65], is increased in Parkinsonian
patients [143, 144], as well as in experimental animals
treated with 6-hydroxydopamine (6-OHDA) [145] or 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
[146], two toxins that cause a selective disruption of
dopaminergic transmission. These changes in the activity
of striatal projection pathways are thought to result in the
motor dysfunctions typical of Parkinson’s disease [65]. 

Administration of levodopa, or dopamine receptor ago-
nists, such as apomorphine, to rats lesioned unilaterally
with 6-OHDA produces a particular form of motor activ-
ity consisting in rotations (turning behavior) oriented to-
ward the side contralateral to the lesion [147]. This re-
sponse, which is attributed to the development of super-
sensitive dopamine transmission in the lesioned side, is
regarded as a measure of the antiparkinsonian properties
of a drug [148].
Administraton of caffeine to 6-OHDA-lesioned rats pro-
duces contralateral turning behavior and potentiates turn-
ing behavior induced by dopaminomimetic drugs, includ-
ing levodopa and apomorphine [149–154]. The mecha-
nism by which caffeine induces motor activity (i.e.
contralateral turning behavior) in the 6-OHDA lesion
model of Parkinson’s disease differs from the stimulant
effect produced on spontaneous locomotion. For in-
stance, whereas both D1 and D2 receptor antagonists are
able to prevent the locomotor stimulation induced by caf-
feine in naive rats [84], only dopamine D2, but not D1, re-
ceptor antagonists block the contralateral turning behav-
ior induced by caffeine in 6-OHDA-lesioned rats [152,
154]. This difference may be due to the functional uncou-
pling between D1 and D2 receptors observed in animal
models of Parkinson’s disease and in parkinsonian pa-
tients cf. [155]. In this pathological situation, dopamine
D1 antagonists lose their ability to prevent the motor
stimulant effects produced by D2 receptor agonists. It is
therefore possible that in 6-OHDA-lesioned rats, the in-
ability of dopamine D1 antagonists to block the stimulant
effect of caffeine, which acts by promoting dopamine D2

receptor-mediated transmission, is a consequence of such
a loss of ‘cross-antagonism’ [155]. In contrast, and in
spite of the functional uncoupling, blockade of dopamine
D2 receptors is still able to prevent the motor activation
induced by caffeine because of the direct functional in-
teraction between D2 and A2A receptors, which are highly
coexpressed on striato-Gpe neurons.
The ability of caffeine to potentiate levodopa-induced
contralateral turning in 6-OHDA-lesioned rats is shared
by selective adenosine A2A receptor antagonists [156–
158], which are therefore regarded as possible anti-
parkinsonian drugs [142, 159]. One of these compounds,
KW-6002, alleviates parkinsonian symptoms in monkeys
treated with MPTP and potentiates the therapeutic effi-
cacy of low-dose levodopa and dopamine receptor ago-
nists [110, 160, 161]. The potential therapeutic efficacy
of adenosine A2A receptor antagonists is further demon-
strated by studies showing that the motor impairment
caused by genetic inactivation of the dopamine D2 recep-
tor is counteracted by administration of KW-6002 [75]. In
addition, caffeine enhances locomotion in mice made
dopamine deficient by inactivating the gene coding for
tyrosine hydroxylase, the rate-limiting enzyme in the syn-
thesis of catecholamines [162]. 
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Studies performed in MPTP-treated monkeys show that
the anti-parkinsonian effect of KW-6002, administered
alone or together with dopaminomimetic drugs, is not ac-
companied by dyskinesia, even after several days of ad-
ministration [110, 160, 161]. These results suggest that
combined treatment with levodopa and adenosine A2A re-
ceptor antagonists improves the symptoms of Parkinson’s
disease without causing dyskinesia. In support of this
idea, it has been reported that in hemiparkinsonian rats,
the A2A receptor antagonist CSC prevents levodopa-in-
duced behavioral sensitization, which is considered an in-
dicator of dyskinesia [163]. Lack of behavioral sensitiza-
tion is also observed following chronic administration of
levodopa to A2A knockout mice unilaterally lesioned with
6-OHDA [164]. In addition, coadministration of caffeine
reduces the hyperlocomotor effect produced by levodopa
in genetically altered, dopamine-deficient mice [162].
The idea that adenosine A2A receptor antagonists possess
antidyskinetic properties has been recently challenged by
Lundblad et al. [165]. Utilizing a more specific approach
to the quantification of levodopa-induced abnormal in-
voluntary movements [166–168], these authors show
that coadministration of an adenosine A2A receptor antag-
onist does not prevent the dyskinetic effect caused by
therapeutic doses of levodopa given to severely dener-
vated rats. 
In conclusion, blockade of adenosine A2A receptors with
caffeine or with selective antagonists improves the symp-
toms of Parkinson’s disease in animal models and poten-
tiates the therapeutic efficacy of dopaminomimetic med-
ications. This latter effect may help to reduce the dosage
of levodopa and indirectly diminish the incidence of
‘peak-dose’ levodopa-induced dyskinesia, which current-
ly represents one of the major problems in the pharma-
cotherapy of Parkinson’s disease. Whereas initial clinical
trials did not report any significant improvement follow-
ing administration of caffeine to parkinsonian patients
[169, 170], more recent work indicates the potential ther-
apeutic value of theophylline [171]. It should be noted,
however, that methylxanthines, although potentially use-
ful to correct for the psychomotor symptoms of Parkin-
son’s disease, could have negative effects in patients be-
cause of their anxiogenic properties and their adverse car-
diovascular effects. In this regard, the use of specific
adenosine A2A receptor antagonist may be more appropri-
ate, as these drugs do not induce anxiety [172]. More
studies will be necessary to establish the efficacy and
suitability of adenosine A2A receptor blockade in the
treatment of Parkinson’s disease. 

Caffeine and neuroprotection

Clinical studies have established a positive correlation be-
tween dietary caffeine consumption and reduced risk of

Parkinson’s disease [173, 174]. In agreement with these
observations, caffeine has been shown to reduce the neu-
rotoxic effect exerted by MPTP on dopaminergic neurons
[175]. The mechanisms underlying the neuroprotective
action of caffeine are not completely understood; however,
blockade of A2A receptors appears to be involved, since se-
lective A2A receptor antagonists, but not A1 receptor an-
tagonists, reduce both MPTP [175] and 6-OHDA [176] in-
duced neurodegeneration. In addition, blockade of A2A re-
ceptors has been shown to exert neuroprotective action
during excitotoxicity and cerebral ischemia [177–180]. It
has been proposed that caffeine may protect dopaminergic
cells by reducing glutamate excitotoxicity. This action
could be exerted via a polysynaptic circuit leading to inhi-
bition of the subthalamic nucleus (cf. fig. 1) [175], a re-
gion that sends a glutamatergic input to the substantia ni-
gra pars compacta and that has been proposed as a target
for neuroprotective therapies [181].

Concluding remarks and future perspectives

Several lines of evidence indicate that the psychomotor
stimulant effect of caffeine is exerted by modulating the
state of excitability of striatal medium spiny neurons, via
blockade of adenosine A2A receptors. Although caffeine
acts, at least in part, by facilitating dopamine D2 receptor
transmission, its mechanism of action appears to be sub-
stantially different from that of ‘dopaminomimetic’ psy-
chostimulants, such as cocaine and amphetamine.
Caffeine acts on the indirect striato-Gpe pathway, where-
as cocaine and amphetamine affect the direct, striato-ni-
gral/Gpi pathway (fig. 4). In addition, and in contrast with
cocaine and amphetamine, caffeine does not influence
dopamine release in the ventral striatum [51], and its psy-
chostimulant effect is independent of this brain region
[95–97] (but see [94]). In fact, the stimulant effects of caf-
feine and cocaine are additive [182, 183].
The motor stimulant effect of caffeine is accompanied by
changes in IEG expression and DARPP-32 phosphoryla-
tion opposite to those caused by cocaine (and ampheta-
mine) (fig. 4), which also increase motor activity. This
apparent discrepancy can be reconciled by considering
that the striato-Gpe indirect pathway, which is inhibited
by caffeine, and the striato-nigral/Gpi direct pathway,
which is activated by cocaine, regulate motor activity in
opposite ways (cf. fig. 1). The ability of DARPP-32 to in-
tensify the behavioral effects of cocaine and caffeine in-
dicate that this phosphoprotein functions as a bidirec-
tional modulator, able to amplify responses elicited by ac-
tivation as well as inhibition of the cAMP/PKA cascade. 
One important question to be addressed in future studies
is the identification of the downstream target proteins re-
sponsible for regulation of the activity of striato-Gpe neu-
rons exerted by caffeine. The involvement of the DARPP-
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32/PKA/PP-1 pathway in dopamine D1 receptor-mediated
regulation of glutamate and GABA receptors has been
previously demonstrated [137–139]. These regulations
are most likely involved in the activation of striato-ni-
gral/Gpi neurons, since D1 receptors stimulate IEG ex-
pression specifically in these cells [116, 117]. It is possi-
ble that caffeine, via stimulation of DARPP-32 phos-
phorylation at Thr75, regulates a similar set of downstream
target proteins in an opposite way, thereby depressing the
activity of striato-Gpe neurons.
Caffeine at low doses induces place conditioning [182,
184], and tolerance to its locomotor stimulant effect is ob-
served after repeated administration [12, 87, 152, 185].
However, caffeine has a limited ability to promote self-ad-
ministration compared with cocaine, amphetamine and
other drugs of abuse cf. [186] and is not listed among ad-
dictive substances in the Diagnostic and statistical man-
ual of mental disorders (4th ed.) [187]. Nevertheless, de-
pendence on caffeine is currently a matter of discussion,
and caffeine withdrawal symptoms including headaches,
irritability, drowsiness and fatigue have been documented
[78, 186, 188]. Caffeine tolerance is accompanied by
changes in IEG expression and adenosine receptors [189].
Interestingly, prolonged administration of an adenosine
A2A receptor antagonist does not induce tolerance to its
motor stimulant effect [190], raising the possibility that

caffeine tolerance is dependent on blockade of A1, rather
than A2A, receptors. Future studies will be necessary to ex-
amine the possible involvement of DARPP-32 and other
intracellular signaling molecules in the adaptive responses
produced by long-term exposure caffeine.
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