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I
n conjunction with experimental investigation, appropriate
computational tools can substantially help researchers to
uncover the mechanism underlying gene regulation and
understand gene functionality. Several computational
approaches with different levels of modeling detail have

been developed to investigate the dynamics of gene networks
[1]–[3]. With limited knowledge of network structure and exper-
imental data, a Boolean network provides a coarse model, capa-
ble of predicting certain dynamic behavior of a gene network
[4], [5]. The approach based on deterministic differential equa-
tions (DDEs) provides a fine model [1], [3] but only reflects the
deterministic dynamics of a gene network averaged over many
cells. The finest stochastic approach [6], [7], based on stochastic
kinetics [8]–[10], can capture the stochasticity inherent in gene
expression in a single cell. The power of the stochastic model
lies in its completeness and attention to detail [2].

Stochasticity in gene expression is mainly due to a series of
events that involve a small number of molecules of DNA, RNA,
and proteins. As each of these molecular events is subject to sig-
nificant thermal fluctuations, the amount of mRNA and protein
expressed from a gene is a stochastic process, which is called
noise by biologists. Although gene expression noise was noticed
more than more than four decades ago [11], only recently it
received much attention, since recent advances in technology

have provided an impetus for novel experimental investigations
(see [12]–[15] and the references therein). Gene expression
noise can explain many biological phenomena, such as pheno-
typic variations in cells or organisms with the same genes and in
the same environment [14], however, many questions related to
gene expression noise remain unanswered [12]. While biological
investigations of expression noise of a single gene or in a simple
gene network have revealed some of the mechanisms by which
cells control and exploit noise, a computational approach to
modeling and simulating relatively large gene networks will
shed light on many unanswered questions.

As stochasticity in gene expression has been clearly observed
in experiments, it is apparent that precise modeling and simula-
tion of a gene network should take into account this stochastic-
ity. Stochastic kinetics can describe the stochastic behavior of
coupled reactions [9], [10], and was shown to have a rigorous
physical base [8]. Therefore, stochastic kinetics can be employed
to characterize and simulate the dynamics of chemical reactions
in gene expression. Recently, several gene networks have been
simulated [6], [7], [16], using Gillespie’s exact stochastic simula-
tion algorithm (SSA) [9], [10]. However, Gillespie’s SSA requires
large computational power and quickly becomes unmanageable
when the reaction system becomes relatively large.
Development of efficient stochastic simulation algorithms has



IEEE SIGNAL PROCESSING MAGAZINE [28] JANUARY 2007

been an intensive research topic recently, while stochastic mod-
eling of gene network from both biological and computational
perspectives is still at its infancy.

In this tutorial, we attempt to provide a comprehensive
review of the state-of-the-art research on stochastic simulations.
We also try to stimulate the interest of tackling the problem of
stochastic simulation using statistical signal processing meth-
ods, as well as innovative thinking of stochastic modeling of
gene networks from the viewpoint of signal processing.

STOCHASTIC MODELING OF GENE EXPRESSION
Figure 1 depicts a model of the expression of a single gene [13].
To initiate transcription, an RNA polymerase needs to bind to
the promoter of a gene. In eucaryotes, an RNA polymerase
requires a large set of proteins called transcription factors to
position itself correctly at the promoter, and open the two
strands of DNA [17]. As DNA in eucaryotes is packed into nucle-
osomes and higher order forms of chromatin structure, chro-
matin-modifying enzymes are also required to remodel
chromatin so that an RNA polymerase can access the promoter.
Consequently, the promoter is either in a repressed state in
which an RNA polymerase cannot effectively bind to the pro-
moter, or in an active state in which an RNA polymerase can
bind to the promoter and efficiently initiate transcription. As
activities of transcription factors and chromatin-modifying
enzymes are subject to thermal fluctuations, the promoter ran-
domly switches between these two states. A procaryotic gene,
such as the lacZ gene in bacteria E. coli, can be controlled by an
activator or/and a repressor [17]. As a result, a procaryotic gene
can also randomly stay in either an inactive or active state. The
parameters kon and koff in Figure 1 are deterministic rate con-
stants used in conventional deterministic kinetics modeling the
initiation of transcription. As we will discuss, the transition
probability between two states is related to these deterministic
rate constants. As shown in Figure 1, the gene is transcribed
with a probability sA per unit time, when the promoter is active,
and with a much lower rate sR per unit time, when the promot-
er is repressed. Due to the randomness present in the initiation
of transcription and transcription process itself, the number of
mRNA molecules transcribed from the gene is random.

In prokaryotes, ribosomes can bind to the mRNA as soon as
it is accessible behind the transcribing RNA polymerase and

start translation. On the other hand, in eukaryotes, mRNA
molecules are transported from nucleus into cytoplasm and
translated there. In the meantime, the mRNA can be bound
and degraded by a multienzyme complex called degradosome.
Therefore, an mRNA molecule is randomly translated to pro-
tein peptides by ribosomes, or, is degraded by degradosomes
with certain probability that determines the rate constants dM

and sP as shown in Figure 1. Finally, a functional protein can
be targeted by a small polypeptide called ubiquitin, and be
degraded by the proteasome. It is apparent that the amount of
protein expressed from a gene is a random number, since the
number of mRNA molecules is random as we discussed earlier,
and the degradation and translation of the mRNA, as well as
the degradation of protein itself, are random events. The
model in Figure 1 is a simplified stochastic model for gene
expression. More sophisticated models can be developed to
characterize the gene expression in real cells, taking into
account many additional factors, such as sequential assembly
of the core transcription apparatus, pulsatile mRNA produc-
tion due to reinitiation [18], and the scanning mechanism of
ribosomes including leaky scanning and reinitiation in initia-
tion of translation [19].

Genes and proteins are organized into extensive networks
in e.g., signal pathways, that allow cells to respond and adapt
to their environment. In a gene network, stochasticity in the
expression of a particular gene can propagate to downstream
genes, being amplified or attenuated. Particularly, negative
feedback loops ubiquitous in biology can attenuate noise.
Actually, some biologists found it useful to invoke analogies
from signal processing when investigating gene expression
noise [12], [20]. In terms of signal processing, a negative feed-
back loop in a biological pathway functions as a low-pass filter,
and an integral feedback is similar to a band-pass filter [12],
[20]. In our view, it is appropriate to model a gene network as
a stochastic system, that involves many modules such as signal
amplifiers, attenuators, integrators, negative and positive feed-
back loops, oscillators, and other possible components, similar
to signal processing circuits. Since functional modules are a
critical level of biological organization [21], such module-
based modeling of gene networks not only is biologically
meaningful, but also provides scalable models for large gene
networks that can facilitate simulation and analysis.

[FIG1] A model of the expression of a single gene.
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However, gene networks may have some fundamental differ-
ences with the stochastic systems we often deal with in signal
processing and control systems. When we design a stochastic
system, we often know the input and output relationship or the
transfer function of the system. In the expression of a gene, the
regulatory signal, such as transcription factor, can be regarded
as the input signal, while the protein expressed from the gene is
the output signal. However, it is not apparent how to character-
ize the input and output relationship for expression of a single
gene, if such relationship exists. There are many questions that
need to be answered, before we can model a gene network prop-
erly as a stochastic system that can be further analyzed.

CHARACTERIZING THE STOCHASTIC
DYNAMICS OF GENE NETWORKS
Suppose that gene expression and other activities in a gene net-
work involve N molecular species {S1, . . . , SN} that chemically
interact through M reaction channels {R1, . . . , RM}. We specify
the dynamic state of this chemical system by the state vector
X(t) = [X1(t), . . . , XN(t)]T, where Xn(t), n = 1, . . . , N , is
the number of Sn molecules at time t, and (·)T represents the
transpose of the vector in parentheses. As in [9], [22], [23], the
dynamics of reaction Rm are defined by a state-change vector
νννm = [ν1m, . . . , νNm]T, where νnm gives the changes in the Sn

molecular population produced by one Rm reaction, and a
propensity function am together with the fundamental premise
of stochastic chemical kinetics

am(x)dt � the probability, given X(t) = x,

that one reaction Rm

will occur in the next infinitesimal

time interval [t, t + dt). (1)

It is instructive to consider the following simple example involv-
ing N = 5 molecular species and M = 3 reactions:

R1 : S1 + S2 → S3 + S4, R2 : 2S3 → S5,

R3 : S4 → S2. (2)

In this example, we have ννν1 = [−1,−1,+1,+1, 0]T,
ννν2 = [0, 0,−2, 0,+1]T, and ννν3 = [0,+1, 0,−1, 0]T.

Define the probability rate constant cm as the
probability that a randomly selected combination of
Rm reactant molecules react in a unit time period [9].
Let hm(x) be the number of distinct combinations of
Rm reactant molecules in the system at time t when
X(t) = x, then the propensity function is given by
am(x) = cmhm(x). In example (2), a1(x) = c1 x1 x2 ,
a2(x) = c2 x3(x3 − 1)/2, and a3(x) = c3 x4. As argued
in [24], we typically only need to consider elementary
reactions including bimolecular and monomolecular
reactions, such as those in  (2), since trimolecular
reactions in a fluid are usually the combined result of
two bimolecular reactions and one monomolecular
reaction. The probability rate constant cm can be cal-

culated from the conventional deterministic reaction rate km

[10]. For monomolecular reactions, we have cm = km, and for
bimolecular reactions, we have cm = km/�, when two reac-
tants are from different molecular species as in R1 of example
(2), and cm ≈ km/(2 �), when two reactants are the same as in
R2 of example (2), where � is the volume of the system.

As an example of modeling gene expression, we now consider
a simplified model of intracellular viral infection depicted in
Figure 2 [25]–[27]. Based on several assumptions and simplifi-
cations, the viral infection process is modeled by the following
six reactions.

R1 : RNA
c1→ DNA, R2 : DNA

c2→ RNA + DNA,

R3 : RNA
c3→ P + RNA, R4 : RNA

c4→ ∅,

R5 : P
c5→ ∅, R6 : DNA + P

c6→ V, (3)

where we denote the viral DNA, mRNA, protein, and virus as
DNA, RNA, P, and V, respectively. For the clarity of illustration,
we assume that the genome of virus consists of double stranded
DNA, although it can be other different nucleic acids. During
initial infection of a cell, one viral DNA molecule is inserted into
the cell. The DNA is transcribed to mRNA (R2), while the mRNA
molecule can be used as a template to replicate the viral DNA
(R1), and also translated to protein (R3). In the meantime, the
mRNA and protein molecules are degraded (R4 and R5). Some
viral DNA molecules are packed into viral proteins to form viral
structure and exit the host cell (R6). The stochastic rate con-
stants are given by [27]: c1 = 1 day−1 , c2 = 0.025 day−1 ,
c3 = 100 day−1 , c4 = 1 day−1 , c5 = 1.99 day−1 , and
c6 = 11.25 × 10−6 day−1. We will simulate this example using
the exact SSA in a later section.

THE CHEMICAL MASTER EQUATION
As the probability of a reaction occurs in the infinitesimal time
interval [t, t + dt) is only dependent upon the state X(t) at

[FIG2] A simplified model of intracellular viral infection.
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time t, it is clear that X(t) is a Markov process with discrete
states, or a jump Markov process. The time evolution of the
state probability P(x, t) of this Markov process is governed by
the chemical master equation (CME) [9]:

∂ P(x, t)
∂ t

=
M∑

m=1

[am(x − νννm)P(x − νννm, t) − am(x)P(x, t)].

(4)

The CME essentially says that the rate of change in P(x, t) is
equal to the probability of entering the state x minus the proba-
bility of leaving the state x in unit time. A rigorous derivation of
the CME is given in [9], based on the fundamental premise (1).
While the CME exactly describes the evolution of P(x, t) with
time, unfortunately, we can solve the CME to obtain P(x, t)
only in rare case. However, under certain conditions that we will
discuss next, X(t) is approximately determined by a stochastic
differential equation, the chemical Langevin equation (CLE),
which is more tractable analytically or numerically.

THE CHEMICAL LANGEVIN EQUATION
Let Km(x, τ ), for any τ > 0, be the number of Rm reactions that
occur in the time interval [t, t + τ ]. The state vector at time
t + τ will be

X(t + τ) = x +
M∑

m=1

νννmKm(x, τ ). (5)

The probability distribution function of Km(x, τ ) is generally
difficult to obtain. But we can have an excellent approximation
to it, if the following condition is satisfied:

C1: The value of τ is small enough to ensure that there is
no significant change in the propensity functions of all reac-
tions, i.e., am(X(t ′)) ≈ am(x), ∀t ′ ∈ [t, t + τ ], ∀m ∈ [1, M].

Condition C1 generally can be satisfied when xn ,
n = 1, . . . , N, are sufficiently large, since reactions occurred
in [t, t + τ ] will cause negligible changes in the state vector
X(t ′), ∀t ′ ∈ [t, t + τ ]. As all the propensity functions essen-
tially remain constant in [t, t + τ ], all reactions occur inde-
pendently. Then, it can be shown that each Km(x, τ ) is an
independent Poisson random variable with mean am(x)τ [22],
[23]. It is well known that a Poisson random variable can be
approximated by a Gaussian random variable with the same
mean and variance, if its mean is much larger than one. To
approximate Km(x)τ by a Gaussian random variable, we
impose another condition on τ :

C2: The value of τ is large enough to ensure that the
expected number of occurrences of each reaction Rm in
[t, t + τ ] is much larger than 1, i.e., am(x)τ � 1.

We can regard any time interval τ that satisfies both C1
and C2 as a macroscopic infinitesimal and denote it simply
by dt, and recall that x is the value of X(t). Then, (5) can be
approximated by the following stochastic differential equa-
tion [24]:

X(t + dt) = X(t) +
M∑

m=1

νννmam(X(t))dt

+
M∑

m=1

νννm
√

am(X(t))dtNm(t), (6)

where Nm(t) , m = 1, . . . , M , are independent standard
Gaussian random variables with zero mean and unit variance.
Notice that when we approximate a Poisson random variable
with a Gaussian random variable, we in effect convert the dis-
crete-state Markov process X(t) to a continuous-state Markov
process. Equation (6) is the standard-form CLE for the continu-
ous Markov process X(t).

While the CLE has been used to simulate gene expression
[12], it is also pointed out in [28] that such a CLE approach is
theoretically unsound. Now, it is clear that only when conditions
C1 and C2 are both satisfied, the CLE approach can provide
results with acceptable accuracy.

THE DETERMINISTIC REACTION RATE EQUATION
In large chemical reaction systems where both Xn(t), ∀n and
the system volume � are large, the conventional deterministic
reaction rate equation (RRE) is often used to describe the sys-
tem dynamics. The deterministic RRE can be derived from the
CLE, when we go to the thermodynamic limit, in which the
number of molecules in the system and the system volume �
both go to ∞ in such a way that the species concentrations
remain constant. Since the RRE is more commonly written in
terms of the species concentrations, let us denote
Yn(t) = Xn(t)/� as the concentration of Sn. Dividing both
sides of (6) by �, we can show that the random term in (6) van-
ishes in the thermodynamic limit, and if we further let dt → 0,
(6) implies the following conventional deterministic RRE [24]:

d Y(t)
dt

=
M∑

m=1

νννmãm(Y(t)), (7)

where ãm(Y(t)) = am(Y(t))/�. It is important to know under
which conditions we can use the CLE or RRE, since a hybrid
approach, involving CME, as well as CLE or RRE, is sometimes
employed to simulate the dynamics of chemical reaction sys-
tems, as we will discuss later.

STOCHASTIC SIMULATION ALGORITHMS

EXACT SSA
Although it is difficult to solve the CME in general, Gillespie
developed an SSA to simulate the Markov process X(t). Like the
CME, Gillespie’s SSA is based on the fundamental premise (1).
Therefore, the realizations of X(t) generated from Gillespie’s
SSA adhere to a probability model identical to that obtained by
the CME. For this reason, Gillespie’s simulation algorithm is
called the exact SSA. There are three different but statistically
equivalent methods for exact SSA: Gillespie’s direct method
(DM) [10], Gillespie’s first reaction method (FRM) [9], and the
next reaction method (NRM) of Gibson and Bruck [29].



THE DIRECT METHOD
For a chemical system in a given state X(t) = x at time t,
Gillespie’s DM SSA answers the following two questions: i)
when will the next reaction occur? and ii) which reaction will
occur? Specifically, the SSA simulates the occurrence of the
following event:

E : no reaction occurs in the time interval

[t, t + τ ], and a reaction Rµ

occurs in the infinitesimal time interval

(t + τ, t + τ + dτ). (8)

Clearly, τ and µ are random variables; it is not difficult show
that they are independent. The probability density functions
(pdfs) of τ and µ are, respectively, given by [10]

p(τ) =a0(x)exp(−a0(x)τ), τ > 0, (9)

p(µ) =aµ(x)/a0(x), µ = 1, . . . , M, (10)

where a0(x) = ∑M
m=1 am(x). It is easy to generate τ and µ

from two independent uniform random variables directly
according to their pdfs. The SSA based on the DM can be
summarized as follows:

Algorithm 1: Exact SSA—Direct Method [10]
1) Initialization (set the initial number of molecules, set
t ← 0).
2) Calculate the propensity function, am(x), m = 1, . . . , M.
3) Generate τ and µ according to their pdfs in (9) and (10).
4) Set t ← t + τ , and update the state vector X(t) ←
X(t) + νννµ.
5) Go to step 2, or else stop.

THE FIRST REACTION METHOD
Let us consider M independent events:

E : no reaction Rm occurs in the time interval

[t, t + τm], and an Rm

occurs in the infinitesimal time interval

(t + τm, t + τm + dτm), m = 1, · · · , M. (11)

Notice that in the event Em in (11), it is possible that a reaction
other than Rm occurs in the time interval [t, t + τm], while in
the event E in (8) no reaction occurs in [t, t + τ ]. The pdf of τm

can be easily found to be an exponential distribution with
parameter am(x), i.e., p(τm) = am(x) exp(−am(x)τm), τm > 0.
If we independently generate τm , m = 1, . . . , M , and take
τ = min{τ1, . . . , τM} and µ = arg minm{τ1, . . . , τM} , we
essentially generate the event E in (8). Therefore, the FRM is
equivalent to the DM. Compared with the DM, the FRM is not
efficient, because it needs to generate more random variables.
However, Gibson and Bruck transformed the FRM into an
equivalent and more efficient NRM [29].

THE NEXT REACTION METHOD
The NRM improves the efficiency of the FRM by exploiting the
following two observations: i) each am(x) is only affected by a
few reactions and can be efficiently calculated in each step, and
ii) τm, m = 1, . . . , M, generated in a step can be reused in the
next step. Towards this end, a data structure called dependency
graph is defined to tell precisely which am(x) should be updated
after a reaction occurs. An indexed priority queue is also defined
to properly reuse τm, m = 1, · · · , M. The detailed description of
the NRM can be found in [29]. After incorporating these two
mechanisms into the NRM, it is argued in [29] that the FRM is
more efficient than the DM, for loosely coupled chemical reac-
tion systems where the firing of one reaction channel does not
affect many other reactions.

However, a detailed analysis of CPU cost of both NRM and
DM in [30] shows that maintaining and updating the data
structure of the indexed priority queue in the NRM may
require significantly large cost for some practical systems. An
optimized direct method (ODM) is proposed in [30] to
improve the efficiency of the DM. The ODM incorporates the
dependency graph used in the NRM into the DM to reduce the
cost of calculating the propensity functions, am(x). It also
properly reorders the index of reaction channels to reduce the
cost of generating the reaction index µ. With these two opti-
mization steps, the ODM is much more efficient than the
original DM. It is argued in [30] that in practical systems that
almost always have the multiscale nature, the ODM is prefer-
able to the NRM.

We simulated the viral infection process depicted in Figure 2
using the exact SSA. Figure 3 depicts the number of molecules
of viral protein from the 100th–150th day after infection. After
initial infection, a cell may exhibit either a typical infection in
which all species become populated or an aborted infection in
which all species are eliminated from the cell [26]. We start to
run simulation from the 100th day assuming that the cell is typ-
ically infected and using the following initial condition: the
numbers of viral mRNA, DNA, and protein molecules are 20,

[FIG3] Number of protein molecules.
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200, 104, respectively. The mean of these molecular numbers
obtained from 104 simulation runs and the results of one simu-
lation run are shown in Figure 3. It is seen that molecular num-
bers in one simulation run fluctuate around the mean numbers.

APPROXIMATE SSA
Although the exact SSA, that simulates every reaction event
exactly, and one at time, is easy to implement, and produces
realizations of X(t) with correct statistics, it is often too slow for
simulating many practical systems. Several approximate meth-
ods have been developed to significantly speed up simulation by
giving up some of the exactness of the SSA. The basic idea
behind these approximate methods is that instead of simulating
a single reaction per step, a number of reactions can occur in
each simulation step. As one step leaps over many reactions,
these approximate methods are known as leap methods includ-
ing the τ -leap method [22], [23], the binomial τ -leap method
[31], [32], and the K-leap method [33]. Since the exact SSA is
based on the fundamental premise (1), one would expect that a
leap method can provide an excellent approximation to the exact
SSA, if the propensity functions am(x) remain approximately
constant in each leap.

THE τ -LEAP METHOD
In the τ -leap method, the step size of each leap, τ , is a deter-
ministic number selected to satisfy condition C1 that is also
referred to as leap condition. Once τ has been selected, the
number of firings of a reaction channel Rm , Km(x, τ ), is
approximately a Poisson random variable with mean am(x)τ
as shown earlier, and the state vector X(t) can be updated
using (5). The question now is how to select the value of τ to
satisfy the leap condition, given X(t) = x . Letting
�am(τ ; x) � am(X(t + τ))− am(x), Gillespie imposed the fol-
lowing constraint to satisfy the leap condition C1 [22]:

|�am(τ ; x)| ≤ εa0(x), ∀m = 1, · · · , M, (12)

where ε is a prespecified error control parameter satisfying
0 < ε � 1. Since �am(τ ; x) is a random variable, it will be
impossible to find a τ directly satisfying (12). Gillespie proposed
to use a first-order Taylor expansion of �am(τ ; x) to approxi-
mate �am(τ ; x), and then bound the absolute mean and stan-
dard deviation of this approximate �am(τ ; x) by εa0(x) [22],
[23], which we will describe next in detail. Since we have
�X(τ) � X(t + τ) − x = ∑M

m=1 Km(τ ; x)νννm , the first-order
Taylor expansion of �am(τ ; x) can be found as
�am(τ ; x) ≈ ∑M

m=1 fmm ′(x)Km ′(x, τ ), where

fmm ′(x) �
[

∂am(x)
∂x

]T

νννm ′ , m, m ′ = 1, . . . , M. (13)

Using this approximation, we can find the approximate mean
and variance of �am(τ ; x) as

E[�am(τ ; x)] ≈ ηm(x)τ,

var[�am(τ ; x)] ≈ σ 2
m(x)τ, (14)

where

ηm(x) �
M∑

m ′=1

fmm ′(x)am ′(x), m = 1, . . . , M,

σ 2
m(x) �

M∑
m ′=1

f2
mm ′(x)am(x), m = 1, . . . , M. (15)

If we impose the following requirements:
|E[�am(τ ; x)]| < εa0(x), 

√
var[�am(τ ; x)] < εa0(x), we obtain

the value of τ that approximately satisfies the leap condition (12)

τ = min
m∈[1,M]

{
εa0(x)
|ηm(x)| ,

ε2 a2
0(x)

σ 2
m(x)

}
. (16)

The accuracy of τ -leaping will depend upon how well the
leap condition is satisfied. If the reactant molecule populations
are very large, it will take a very large number of reaction
events to change the propensity functions significantly. In this
case, we should be able to satisfy the leap condition with a
choice for τ that allows for many reaction events to occur in
[t, t + τ ]. On the other hand, if satisfying the leap condition
turns out to require τ to be less than some small multiple (say
10) of 1/a0(x) that is the expected step size in the exact SSA,
only a very few reactions can be leaped over, and it would be
faster to forego leaping and use the exact SSA. We summarize
the τ -leap method as follows.

Algorithm 2: Approximate SSA: τ -Leap Method [22], [23]
1) Initialization (set the initial number of molecules, set
t ← 0).
2) Calculate the propensity function, am, m = 1, . . . , M.
3) Calculate τ from (13), (15), and (16).
4) If the τ value is less than some small multiple (say
ten) of 1/a0(x), then reject it and execute instead a mod-
erate number (say 100) of successive exact SSA steps,
and then go to step 2. Otherwise, accept τ and proceed
to step 5.
5) For each m = 1, . . . , M , independently generate Km

according to a Poisson distribution with mean am(x)τ .
6) Set t ← t + τ , and update the state vector vector X(t) ←
X(t) + ∑M

m=1 νννmKm.
7) Go to step 2, or else stop.
An efficient method for selecting step size for the τ -leap

method of [22] and [23] was recently proposed in [34]. Instead
of using (12) to satisfy the leap condition C1, the authors of
[34] propose to bound the relative change in all the propensi-
ty function by the same amount ε : |�am(τ ; x)| ≤
εam(x), ∀m = 1, . . . , M. They further show that these inequal-
ities are approximately equivalent to the following set of
inequalities: |�Xn(τ)| ≤ max{εnxn, 1}, n = 1, . . . , N, where εn

can be found from ε as discussed in [34]. Then, they choose the
step size τ to satisfy the above inequalities appreciably. It is
demonstrated in [34] that this step-size selection method is
more efficient than that in the original τ -leap method.
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THE BINOMIAL τ -LEAP METHOD
In the τ -leap method, the number of firings of each reaction
channel Km(x, τ ) in each leap is approximated by a Poisson ran-
dom variable. As realizations of a Poisson random variable can
be any nonnegative integer, we always run the risk that a reac-
tion channel Rm fires so many times in one leap that more mol-
ecules of one of its reactants will be consumed than those are
actually available. When this happens, the number of molecules
of that reactant becomes negative, which is clearly undesirable.
Tian and Burrage, and independently Chatterjee et al., proposed
the binomial τ -leap method to cope with the problem of nega-
tive population [31], [32]. The binomial τ -leap method approxi-
mates the Poisson random variable in step 5 of Algorithm 2 by a
binomial random variable, B(km,max, pm), with parameters
km,max and pm = [am(x)τ ]/km,max . All other steps are the
same. Several methods of choosing km,max were proposed to
avoid the problem of negative number of molecules. Although
the binomial τ -leap method improve simulation accuracy in
some cases, the method in [32] cannot handle the case where
more than two reaction channels share certain reactants, while
the method in [31] may introduce bias.

In an alternative approach, Cao et al. modified the τ -leap
method to avoid the problem of negative population [35]. Cao
et al. classify the reaction channels into two categories: critical
and noncritical reaction channels. If km,max =
minn∈[1,N], νnm<0�xn/|νnm|� is less than or equal to some criti-
cal value nc, where �x� denotes the greatest integer that is less
than or equal to x, then Rm is critical; otherwise, it is noncriti-
cal. Typical value for nc is between two and 20. A tentative step
size τ ′ is calculated from (16), as in the τ -leap method; another
tentative step size τ ′′ is generated from an exponential distribu-
tion with parameter 1/a c

0 (x), where a c
0 (x) is the sum of the

propensity functions of the critical reaction channels. Then the
actual step size is chosen as τ = min{τ ′, τ ′′}. For all noncritical
reaction channels {Rm′ }, we generate Km′ as a sample of
Poisson random variable with mean am′(x)τ . For critical reac-
tion channels {Rm′′ }, if τ ′ < τ ′′, then Km′′ = 0,∀m′′ ; if τ ′ ≥ τ ′′,
then we generate reaction index µ according to the probablility
p(µ) = aµ(x)/a c

0 (x) and set Ku = 1 and other Km′′ to be zero.
It is argued that the modified τ -leap method can well handle the
problem of negative population, and is easier to implement than
the binomial τ -leap method.

THE K-LEAP METHOD
In the τ -leap method, the number of firings of each reaction
channel during a leap is unbounded, and thus, there is always a
probability that the state vector X(t) undergoes a significantly
large change during one leap, which will inevitably cause large
changes in the propensity functions, thereby violating the leap
condition. The dilemma of the τ -leap method is: how can a pres-
elected step size τ , without knowing at least an upper bound on
the number of reactions that will occur in the next leap, satisfy
the leap condition well? We recently developed a K-leap method
to avoid this dilemma by simulating the occurrence of K ≥ 1
reactions during each leap [33]. Here K is a deterministic con-

stant chosen to satisfy the leap condition, and after K is chosen,
the time τ that is leaped over in a step is a random variable.

Denoting the number of firings of each reaction channel as
Km, m = 1, . . . , M , we proved in [33] that τ is independent
from K1, . . . , KM under the constraint 

∑M
m=1 Km = K, that is

p(K1, . . . , KM, τ |∑M
m=1 Km = K) = p(τ |∑M

m=1 Km = K)

p(K1, . . . , KM|∑M
m=1 Km = K) . Moreover, we showed that

p(τ |∑M
m=1 Km = K) is a Gamma pdf given by

p

(
τ |

M∑
m=1

Km = K

)
= a0 exp(−a0τ)(a0τ)K−1

(K − 1)!
, τ > 0, (17)

while p(K1, . . . , KM|∑M
m=1 Km = K) is a multinomial pdf

given by

p

(
K1, . . . , KM |

M∑
m=1

Km = K

)
= K!∏M

m=1 Km!

M∏
m=1

θ
Km
m , (18)

where a0 = ∑M
m=1 am, and θm = am/a0, m = 1, . . . , M.

Several methods of selecting K according to the leap condi-
tion have been proposed in [33]. Here, we give a K-selection
method that is in spirit similar to τ -selection method in (16).
Let us define θθθ � [θθθ1, . . . , θθθ M]T, and K � [K1, . . . , KM]T, then
we have E [K] = Kθθθ . If we define a matrix C with
[C]mm ′ = −θmθm ′ , for m �= m ′ , and [C]mm = θm(1 − θm) ,
where [C]mm ′ denotes the entry on the mth row and the m ′th
column of C, the covariance matrix of K is given by
cov[K] = KC . Letting fm = [ fm1, . . . , fmM]T , m = 1, . . . , M ,
where fmm ′ is given in (13), and

ηm(x) � fT
mθθθ, m = 1, . . . , M,

σ 2
m(x) � fT

mCfm, m = 1, . . . , M. (19)

From the first-order Taylor expansion of �am(K, x), we obtain
the following:

E [�am(K; x)] ≈ ηm(x)K,

var[�am(K; x)] ≈ σ 2
m(x)K. (20)

Using the constraints |E [�am(K; x)]| < εa0(x) and√
var[�am(K; x)] < εa0(x), and (20), considering that the min-

imum value of K is 1, we obtain the value of K:

K = max

{
min

m∈[1,M]

{
εa0(x)
|ηm(x)| ,

ε2 a2
0 (x)

σ 2
m(x)

}
, 1

}
. (21)

When K = 1, our K-leap method becomes the exact SSA.
Hence, our K-leap method can adaptively change from the exact
SSA to an approximate leap method, whenever the leap condi-
tion allows to do so. We summarize the K-leap method in the
following simulation algorithm.

Algorithm 3: Approximate SSA: K-Leap Method [33]
1) Initialization (set the initial number of molecules, set
t ← 0).
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2) Calculate the propensity function, am, m = 1, · · · , M.
3) Calculate K from (21).
4) If K = 1, execute an exact SSA step, and go to step 6.
5) If K > 1, generate τ according to the Gamma pdf (18), and
generate Km, m = 1, · · · , M, according to the multinomial
pdf (18).
6) Set t ← t + τ , and update the state vector vector X(t) ←
X(t) + ∑M

m=1 νννmKm.
7) Go to step 2, or else stop.

MULTISCALE STOCHASTIC SIMULATION
In gene networks and some other chemical reaction systems,
certain reaction channels can fire much more frequently
than others, i.e., some reaction channels are fast while the
others are slow. For example, in the gene expression of the
heat shock response of E. coli [36], [37], six out of 61 reac-
tion channels are much faster than others. If the exact SSA is
used to simulate such systems, the majority of the simulation
time will be spent on fast reactions. However, it is often the
case that the slow reactions have a greater impact on the
behavior of the system. Simulating each of the fast reactions
is often neither necessary nor useful, but only incurs a huge
computational burden. Approximate leaping methods are also
not efficient to simulate such multiscale systems, since the
step size of each leap will most likely be very small, limited
by fast reactions.

Multiscale stochastic simulation methods aim to effi-
ciently simulate multiscale systems by legitimately skipping
over the fast reactions and explicitly simulating only the
slow reactions [25], [26], [38]–[40]. Let us first look at the
quasi-steady-state approach of Rao and Arkin [40]. Rao and
Arkin partition all molecular species into intermediate and
primary species. If a species is highly reactive, it is an inter-
mediate species, otherwise, it is a primary species. We also
call intermediate species fast species and primary species
slow species. Let the generic state vector at t be x = [xT

s , xT
f ]T

where xs and xf are the state vectors of slow and fast species,
respectively; correspondingly, the state change vector is par-
titioned as νννm = [(ννν s

m)T, (ννν
f

m)T]T , where ννν s
m and ννν

f
m are

state change vectors associated with slow and fast species,
respectively.  We can write the probability P(x; t) as
P(x; t) = P(xf | xs; t)P(xs; t). Using the chain rule of differ-
entiation, the CME in (4) becomes

P(xs; t)
dP(xf | xs; t)

dt
+ P(xf | xs; t)

dP(xs; t)
dt

=
M∑

m=1

[
am

(
xs − ννν s

m, xf − ννν f
m

)

× P
(

xf − ννν f
m | xs − ννν s

m; t
)

P
(
xs − ννν s

m; t
)

− am(xs, xf )P(xf | xs; t)P(xs; t)


. (22)

Summing both sides of (22) with respect to xf , and noticing that∑
xf

dP(xf | xs; t)/dt = d [
∑

xf
P(xf | xs; t)]/dt = 0, we obtain

the CME for the slow species:

dP(xs; t)
dt

=
M∑

m=1

[
ām

(
xs − ννν s

m
)

×P
(
xs − ννν s

m; t
) − ām(xs)P(xs; t)

]
, (23)

where

ām(xs) =
∑

xf

am(xs, xf )P(xf | xs; t) (24)

is the conditional mean of am(xs, xf ) with respect to the condi-
tional probability P(xf | xs; t).

Rao and Arkin made a quasi-steady-state assumption (QSSA)
[40], which says that

dP(xf | xs; t)
dt

≈ 0, (25)

i.e., P(xf | xs; t) is approximately independent of t, and can be
written as P(xf | xs). Under this QSSA, Rao and Arkin obtained
an approximate CME for the slow species, which is the same as
(23) except that the equality sign is replaced by an approximate
equality sign, and

ām(xs) =
∑

xf

am(xs, xf )P(xf | xs). (26)

But here, we show that the CME (23) for the slow species can be
exactly derived from the original CME. The CME (23) is in fact
mathematically valid for any partition of the molecular species.
However, without a proper assumption, such as the QSSA, the
propensity function ām(xs) in (24) is affected by the time-
dependent pdf P(xf | xs; t), which implies that we cannot simu-
late the time evolution of the slow species independently from
the fast species, based on the CME (23). With the QSSA, we now
can simulate the dynamics of the slow species independently
from the fast species, if ām(xs) in (26) can be calculated. Before
we describe such a simulation method, let us take a look at
another approach, proposed by Cao et al. in [38], to characteriz-
ing multiscale systems, because it provides more insights into
multiscale systems.

Cao et al. first partition all reaction channels into two sets:
reaction channels whose propensity functions are usually
much larger than the propensity functions of all the other
reaction channels are called fast, and all the other reaction
channels are called slow. The molecular species are also corre-
spondingly partitioned into two sets: those species whose pop-
ulation is affected by some fast reactions are called fast
species, and any other species are called slow species. Denote
the state vector X(t) = [Xs(t)T, Xf (t)T]T, where Xs(t) repre-
sents the slow species, and Xf (t) represents the fast species.
Cao et al. defined a virtual fast process X̂f (t) which is basically
the Xf (t) with all slow reaction channels turned off. They
then made the following equilibrium assumption: i) the virtu-
al system has a stochastic partial equilibrium, mathematically,
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limt→∞ P(xf , t) = P(xf ,∞) , where P(xf ,∞) is a well-
behaved and time-independent pdf; and ii) compared with the
occurrence time of the slow reactions, the transient time τrelax

(called the relaxation period) for the virtual reactions to reach
equilibrium is negligible. Essentially, the equilibrium assump-
tion of Cao et al. is equivalent to the QSSA of Rao and Arkin in
the context under consideration. The equilibrium assumption
is concerned with the reactions, while the QSSA is concerned
with the state, but the partition of the reaction system into fast
and slow reactions is equivalent to the partition of the system
into fast and slow species. Therefore, Cao et al. and Rao and
Akin basically characterize the multiscale systems equivalent-
ly, although Cao et al. specify the equilibrium assumption and
the partition of the system more rigorously and precisely.
Under the equilibrium assumption, Cao et al. show that the
propensity function am(xs) is independent of xf :

ām(xs) =
∑

xf

am(xs, xf )P (xf ;∞). (27)

Since under the equilibrium assumption, the states of the
slow species obey the CME in (22) with the propensity func-
tion given in (27), while the states of the fast species have a
stationary distribution, we can simulate the states of the slow
species using the exact SSA, while generating the states of
the fast species from the stationary distribution. Define
ā0(xs) = ∑

m∈Ms
ām(xs), where Ms denotes the set of index-

es of the slow reaction channels. Then an exact SSA step
needs to generate a time τ according to an exponential pdf
with parameter ā0(xs), and generate a reaction index µ
according to the probability p(µ) = āµ(xs)/ā0(xs), µ ∈ Ms.
We summarize the multiscale simulation algorithm in the
following algorithm.

Algorithm 4: Multiscale Simulation—
Partial Equilibrium Method [38]

1) Preparation: Partition the system into fast and slow reac-
tions and species. Find the stationary pdf P(xf ,∞) of the vir-
tual process x̂f (t).
2) Initialization (set the initial number of molecules, set
t ← 0).
3) Calculate the propensity function, ām(xs), for slow reac-
tion channels from (27).
4) Generate τ according to the pdf p(τ) = ā0(xs)

exp(−ā0(xs)τ), τ > 0, and generate µ according to the prob-
ability p(µ) = āµ(xs)/ā0(xs), µ ∈ Ms.
5) Set t ← t + τ , and update the state vector: xs ← xs + νννµ

xf ← a realization generated from the stationary pdf
P(xf ,∞).
6) Record X(t) = [xT

s , xT
f ]T as desired. Go to step 3, or else stop.

The most difficult part of Algorithm 4 is to compute
P(xf ,∞) which is used in calculating ām(xs) and generating
realizations of fast state vector. However, it is shown in [38] that
only the first two moments of P(xf ,∞) are needed to calculate
ām(xs). Hence the slow process Xs(t) can be simulated with only

the first two moments of P(xf ,∞) by ignoring the update on xf

in step 5.
Under the QSSA, the multiscale simulation algorithm of Rao

and Arkin is the same as Algorithm 4, except the pdf P(xf ,∞)

in steps 1 and 5 is replaced by the pdf P(xf |xs), and ām(xs) in
step 3 is calculated from (26). However, it is also difficult to find
P(xf | xs). It is suggested in [40] that P(xf | xs) can be approxi-
mated by a Gaussian distribution and ām(xs) replaced by
am(E [xf | xs], xs).

Instead of using the state vector X(t), Haseltine and
Rawlings [26], as well as Goutsias [25], characterize the
dynamic state of the system by using an M × 1 random vector
Z(t) = [Z1(t), . . . , ZM(t)]T , where Zm(t) = zm ≥ 0, if the
mth reaction channel fires zm times during the time interval
[0, t). Based on Z(t), they developed multiscale simulation
methods that are in spirit similar to those in [38], [40]. It is
most common to characterize the state of a chemical reaction
systems by the population process X(t), instead of Z(t). Due to
the space limitation, we will not further discuss the methods
in [25], [26].

Since chemical reactions in gene expression are almost
always of mutiscale nature, it is important to develop efficient
multiscale SSAs. Although several promising multiscale SSAs
have been proposed [25], [26], [38], [40], as we discussed earli-
er, some important issues need to be addressed. For example,
in the QSSA approach of [40] and the partial equilibrium
approach of [25], [26], [38], how can one efficiently compute
the properties of the steady process? How can we dynamically
partition the system? Can we incorporate a leap method into a
multiscale SSA? Success in developing multiscale SSAs will be
critical to making stochastic simulation widely applicable to
gene networks and other chemical reaction systems.

CONCLUDING REMARKS
The comprehensive catalog of many known genomes and
emerging high-throughput technologies, such as microarray
[41], optical well arrays [42], and time-laps microscopy [43],
that can provide simultaneous measurement of expression of
thousands of genes, provide immense quantity of data, which
enables us to investigate the genome as a system [44]. Such
system-level investigation can reveal the system structures
including the network of gene interactions and biochemical
pathways and, more importantly, the network dynamics and
functions. Therefore, systems biology is clearly an emerging
field of tremendous importance. We believe that stochastic
modeling, simulation, and analysis will play a very important
role in system biology, since they provide a powerful tool to
investigate the stochastic dynamics of gene networks and
other chemical pathways. A signal processing approach will
yield fruitful results in stochastic modeling, simulation, and
analysis of gene networks.
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