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ABSTRACT: A genome-scale metabolic model of the Gram-
positive bacteria Corynebacterium glutamicum ATCC 13032
was constructed comprising 446 reactions and 411 metabo-
lites, based on the annotated genome and available bio-
chemical information. The network was analyzed using
constraint based methods. The model was extensively vali-
dated against published flux data, and flux distribution
values were found to correlate well between simulations
and experiments. The split pathway of the lysine synthesis
pathway of C. glutamicum was investigated, and it was found
that the direct dehydrogenase variant gave a higher lysine
yield than the alternative succinyl pathway at high lysine
production rates. The NADPH demand of the network was
not found to be critical for lysine production until lysine
yields exceeded 55% (mmollysine (mmol glucose) ™ '). The
model was validated during growth on the organic acids
acetate and lactate. Comparable flux values between in silico
model and experimental values were seen, although some
differences in the phenotypic behavior between the model
and the experimental data were observed.
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Introduction

The Gram-positive bacterium Corynebacterium glutamicum
is used for the industrial production of different amino
acids, of which L-lysine and r-glutamate are produced in the
largest quantities with annual production levels of 800,000
and 1,300,000 ton, respectively. Due to its commercial
importance, this organism has received at lot of attention,
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and significant resources have been invested in the develop-
ment of efficient producer strains. Various approaches
have been pursued in order to improve product yield and
productivity. Mutagenesis and screening have been used
with success, but with the development of molecular
biological methods metabolic engineering has been applied
extensively also (Cremer et al., 1991; Eggeling et al., 1998).
Furthermore, fluxomics (Wittmann and Heinzle, 2002),
metabolomics (Strelkov et al.,, 2004) or a combination
of methods (Kromer et al., 2004) have been used to
characterize engineered strains. These studies, often where
different parts of the cell have been studied separately, have
given a lot of insight into C. glutamicum. However, with the
development of high-throughput technologies it is believed
that a more holistic understanding of the whole system
is essential to help extracting knowledge from these data
(Palsson, 2000), consequently allowing a better identifica-
tion of targets improving yields and productivity. The final
goal in this respect is to develop an in silico model
combining kinetic information about specific reactions.
Due to the complexity of biology and the lack of kinetic
information, such a model has not yet been constructed for
C. glutamicum or any other organism.

The first step towards a complete model of an organism
is a genome-scale metabolic model where the annotated
genome is used in combination with available experimental
data to create a list of reactions that then forms the basis for a
stoichiometric model. This type of models have already been
constructed for a number of species such as Saccharomyces
cerevisiae (Forster et al., 2003), Escherichia coli (Reed et al.,
2003), Lactococcus lactis (Oliveira et al., 2005), Staphylo-
coccus aurerus (Heinemann et al., 2005), Streptomyces
coelicolor (Borodina et al., 2005), Helicobacter pylori K
(Schilling et al., 2002), Haemophilus influenzae (Schilling
and Palsson, 2000), Methanosarcina barkeri (Feist et al.,
2006), and Lactobacillus plantarum (Teusink et al., 2006).
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Besides from a convenient overview of the organism and its
capabilities, stoichiometric models can in some cases be used
to predict phenotypic behavior during different environ-
mental and genetic conditions (Edwards and Palsson, 2000;
Edwards et al., 2001; Oliveira et al., 2005), and can directly
be used to test biological hypotheses (Patil et al., 2004).
Stoichiometric genome-scale models can be combined with
data from high-throughput techniques such as transcrip-
tomics (Akesson et al., 2004; Covert et al., 2004) or
fluxomics (Herrgard et al., 2006) and combining this with
constraint-based methods (Price et al., 2003) the prediction
power of the models can be improved.

In this article we present the first step towards a systematic
biological model of C. glutamicum. A genome-scale
metabolic model of the organism is constructed from the
annotated genome of the wild type strain ATCC 13032,
available literature and own experimental observations. The
model is validated against data found in literature under
different conditions such as different biomass production
burdens and growth on different carbon sources.

Materials and Methods

The interconnectivity of metabolites in a network of
biological reactions is given by reaction equations defining
the stoichiometric conversion of substrates into products
for each reaction (Schilling et al., 1999). Reactions are
enzymatic reactions converting a substrate into a product, or
transport reactions moving metabolites between different
parts of the system, intracellular, extracellular or between
different compartments. Active reactions in the biological
system are fluxes serving to dissipate or generate metabo-
lites. Following the law of conservation of mass, a balance
describing the reaction rate of a particular metabolite
through a particular reaction can be written as (Stephano-
poulos et al., 1998):

0=rpee=S-v (1)

The stoichiometric matrix S is an m x n matrix where m is
the number of metabolites and # is the number of reactions
or fluxes taking place within the metabolic network. The
vector v refers to the reaction rate of each individual reaction
or flux in the metabolic network. Metabolic models usually
also include constraints, which will lead to the definition of a
solution space in which the solution to the network equation
must lie (Price et al., 2003). Constraints in a model are dealt
with by introducing constraint equations to the metabolic
network, which can assign a direction of a given reaction
(reversibility or irreversibility) according to known thermo-
dynamic constraints. These equations are typically of the
form «; <v; < B,, where «; and f; are the feasible lower and
upper limit of the reaction rate v;, respectively. In practice
the upper and lower limits are set to arbitrarily high values
when a reaction is reversible without any regulation, whereas
o; is set to zero when a reaction is irreversible. Constraint
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reactions can also be used to set a maximum flux through a
given reaction based on biochemical information.

The above described equation system is usually under-
determined due to the fact that the number of unknown
fluxes exceeds the number of metabolites in the network,
leading to a number of possible solutions, and hence, no
unique solution (Bonarius et al., 1997). To cope with this
linear programming/optimization can be used to maximize
(or minimize) for a certain metabolite objective (e.g.,
growth or product formation) and seeking its maximal
(or minimal) value within the stoichiometrically defined
domain. This procedure is often referred to as flux-balance
analysis (Palsson, 2006). In the present article flux-balance
analysis is carried out using linear optimization, where the
objective functions used are optimizing for either growth
or lysine production. Flux-balance analysis was performed
using the in-house software BioOptv4.9 employing LINDO
API for linear optimization. BioOptv4.9 is available by
contacting the corresponding author.

Construction of Genome-Scale Metabolic Model

Genome scale metabolic models can be constructed using
data from different sources. In this work the model was
constructed in three steps: (i) construction of a crude model
consisting of mass balances for catabolic reactions leading
to the formation of metabolites; (ii) defining the reactions
involved in polymer and biomass synthesis, and energy
requirements; (iii) complete the metabolic network by
adding missing reactions, and to revise the reactions added
in the first step with respect to physiochemical conditions
(reversibility of reactions).

First step was carried out based on the published
annotated genome (Kalinowski et al., 2003). The KEGG
database (http://www.genome.ad.jp/kegg/) and the BioCyc
database (http://www.biocyc.com/) were used in this
process, because these databases present annotation of each
gene linked to its function. In addition, these databases give
a graphical overview of the metabolism of the organism.
Data for step two were found in literature from different
sources, as shown in the supplementary material. Main-
tenance requirements for the model was determined
changing the ATP demand (ATP used for maintenance
and assembling of macromolecules) for maximal biomass
yield on substrate ( Yy,) fitted experimental values. The third
step was done by reviewing biochemical literature for
C. glutamicum or by using own unpublished observations.

The complete model including a list of references used for
the re-construction is available as supplementary files.

Biomass Synthesis Equations

For genome scale metabolic models the equations defining
the biomass synthesis in a genome-scale model are impor-
tant. The biomass-equation consists of reactions converting
single molecules into macromolecules, which are building



blocks of the biomass. For each macromolecule an equation
was formulated based on literature, and energy consump-
tion associated with the assembling reactions was also
included (see Supplementary Material). The representative
averaged biomass composition of a C. glutamicum strain can
be seen in Table I. Since no data on energy requirements
for polymerization of macromolecules in C. glutamicum
could be found, these values were approximated using values
for E. coli (Ingraham et al., 1983). The macromolecule
components were lumped in a final biomass assembly
reaction based on their weight fraction of the biomass.
In our model we included protein, DNA, RNA and cell-
wall components as macromolecules. The macromolecular
composition of biomass was taken from Cocaign-Bousquet
et al., (1996) whereas composition of each macromolecule
was taken from different references (see Supplementary
Material). This same biomass composition was used for all
our simulations.

Macromolecular Composition

Data for the amino acid composition of the protein fraction
in C. glutamicum were taken from Cocaign-Bousquet et al.
(1996). The composition of the DNA was calculated based
on G + C-content of the genomic sequence of C. glutamicum
ATCC 13032 (Kalinowski et al., 2003). It was assumed that
RNA consisted of 5% mRNA, 75% rRNA and 20% tRNA
(molar). The nucleotide composition of mRNA was taken as
for genomic DNA. The nucleotide composition of rRNA was
calculated from the sequences of 16S, 23S, and 5S ribosomal
RNA units. And finally tRNA composition was found from
sequences of leucine and glycine transporting RNAs.
Sequences were downloaded from GenBank (http://www.
ncbi.nlm.nih.gov).

The chemical structure of the C. glutamicum cell-wall has
been intensively studied and consists of a complex network
of the polysaccharide peptidoglycan covalently linked to
another complex polysaccharide arabinogalactan, which is
further esterified with mycolic acids (Puech et al., 2001).
Associated with, but not covalently linked to this fraction
a number of lipids are also connected to the cell-wall, the
more abundant being phospholipids and trehalose myco-
lates (Daffé, 2005). For simplification the cell-wall compo-
nents mentioned above have been divided into individual
lumped reactions which are part of the biomass equation
based on their fraction.

The plasma membrane of C. glutamicum mainly consists
of polar lipids, of which phospholipids are the dominant
type. In C. glutamicum the major phospholipids constitu-
ents are oleic acid (18:1) and palmic acid (16:0), which
contribute to more than 90% of the lipid pool of the
phospholipids (Collins et al., 1982b; Hoischen and Krdmer,
1990). In addition to these fatty acids, myristic acid (14:0),
pentadecanoic acid (15:0), stearic acid (16:1) and tubercu-
lostearic acid (18:0) are present in minor quantities (Collins
et al., 1982b). Based on the published data of C. glutamicum

Table I. Metabolites considered being required for biomass in

C. glutamicum.

Protein (0.52 protein g/g DCW) mmol/g protein
Alanine 1.268
Arginine 0.361
Aspartate 0.368
Aspargine 0.368
Cysteine 0.084
Glutamate 1.044
Glutamine 0.650
Glycine 0.671
Histidine 0.128
Isoleucine 0.359
Leucine 0.669
Lysine 0.355
Methionine 0.144
Phenylalanine 0.244
Proline 0.303
Serine 0.467
Threonine 0.519
Tryptophan 0.052
Tyrosine 0.148
Valine 0.520
ATP (polymerization energy) 38.44

DNA (0.01 gDNA/gDCW) mmol/g DNA
dAMP 0.748
dCMP 0.871
dTMP 0.748
dGMP 0.871
ATP (polymerization energy) 4.44

RNA (0.05 gRNA/gDCW) mmol/g RNA
AMP 0.69
GMP 1.01
CMP 0.70
UMP 0.70
ATP (polymerization energy) 1.24

Lipids (0.13 gLipids/g DCW)

Mycolic acids (0,102 gmycolic acids/gDCW)  mmol/g mycolicacids
Trehalose monocyrynomycolate 0.061
Trehalose dicyrynomycolate 0.043
Free mycolic acids 1.875

Phospholids (0.028 gphospholipids/g DCW)  mmol/g phospholipids
Phosphatic acid 0.033
Phosphatidylglycerol 1.133
Cardiolipin 0.007
Phosphatidyllinositol 0.042
Phosphatidyllinositol mannoside 0.065

Cell wall carbohydrates (0.19 g cell wall carbohydrate/g DCW)
Peptidoglycan (0.095 gpeptidoglycan/gDCW) mmol/g peptidoglycan

N-acetylmuramic acid 1.026
N-acetylglucosamine 1.026
L-alanine 1.026
Diaminopimelinic acid 1.026
p-glutamate 1.026
p-alanine 2.052
ATP (polymerization energy) 5.129
Arabinogalactan (0.095 garabinogalactan/ mmol/g arabinogalactan

gDCW)

Arabinose 4.650
Galactose 0.498

a lumped reaction with molar ratios of each individual
phospholipid was made.

The stoichiometric equation formation of peptidoglycan
was described by a lumped reaction. The molar composition
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was estimated based on data from different sources (Keddie
and Cure, 1978; Daffé, 2005). Also the arabinogalactan
fraction was described by a lumped reaction due to its
complexity. Data used were taken from (Puech et al,
2001).

The mycolic acid synthetic pathway is not well
characterized, although some of the genes involved have
been identified (Brand et al., 2003). Based on structural
considerations it has been postulated that mycolic acids are
synthesized by a condensation and decarboxylation reac-
tions (Daffé, 2005). The “free” mycolic acids are known to
form esters with trehalose in order to form mycolates were
the mycolic acids are bound within the cell wall. The
majority of the mycolic acid fraction consists of the 32:2
30H and 34:1 30H mycolic acids (Collins et al., 1982a).
Other mycylic acids identified are 32:0, 34:0, 36:1, and 36:2
(Jang et al., 1997). In general two types of mycolates are
considered to be present in the C. glutamicum cell wall:
trehalose monocorynemycolate (TMCM) and trehalose
decorynemycolate (TDCM) (Daffé, 2005), both of which
was included in the model. Data from Daffé (2005) was used
to make a lumped reaction for the mycolic acid fraction of
the cell.

Energy Requirements for Growth and Maintenance

In addition to the stoichiometry of each individual macro-
molecule and the overall biomass assembling reaction, the
stoichiometry of the growth and non-growth associated
energy connected to biomass is important in a metabolic
model. In our model we used the value of 29.2 mmol ATP
(gbiomass) ™' for growth associated ATP demand as
estimated by Cocaign-Bousquet et al. (1996) based on
experimentally determined macromolecule composition of
C. glutamicum and known anabolic pathways. ATP demand
for growth associated maintenance reactions was found
by fitting the biomass yield to experimental value of
0.61 gbiomass (gglucose) ' found by Cocaign-Bousquet
et al. (1996). ATP requirements for growth were kept
constant for biomass synthesis for all simulations, as
generally done in flux-balance analysis simulations.

Simulation Methods

As mentioned above, linear optimizations were conducted
using the BioOptv4.9 software. Split points in the network
solutions were checked to see if the results were unique, or
if other optima were possible. Results presented in this
article were unique, unless else is mentioned. The NADPH
generating reaction catalyzed by malic enzyme (EC 1.1.1.40)
and the reaction decarboxylating oxaloacetate catalyzed by
oxaloacetate decarboxylase (EC 4.1.1.13) were constrained
to zero when glucose was used as carbon source based on
biochemical evidence (Petersen et al., 2000).
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Results and Discussion

Reconstruction of the C. glutamicum
Metabolic Network

We constructed a genome scale model of the C. glutamicum
metabolic network (for statistics see Table II). The con-
structed metabolic network consisted of 446 reactions, all
of which were unique (iso-enzymes were removed), which
represent 15% of the protein encoding genes identified
in C. glutamicum (Kalinowski et al., 2003). Four hundred
eleven metabolites were involved in the metabolic network
of which 55 were involved in transport reactions, and had an
internal equivalent (Table II).

Energy Requirements for Biomass Formation

Macromolecule composition of biomass was taken from
Cocaign-Bousquet et al. (1996). ATP demand for biomass
assembly was set to 29 mmol (gbiomass)™' (Cocaign-
Bousquet et al., 1996), and ATP demand for maintenance
was adjusted so the maximum biomass yield (gbiomass
(g glucose)fl) was 0.61 (Cocaign-Bousquet et al., 1996).
The ATP demand for maintenance was found to be
19 mmol (g biomass) !, which is higher than values earlier
reported in literature (1.8-9.2 mmol ATP (gbiomass)fl)
(de Graaf, 2000; Varela et al., 2004). The high ATP demand
for maintenance may be due to an underestimated growth
associated ATP demand. Another reason may be that the
composition of the respiratory chain affects the P/O-ratio
and hence the ATP yield (Bott and Niebisch, 2003). When
maximizing for growth the in silico model uses the most
efficient oxidative phosphorylation, which may not be the
case in reality.

Model Validation

Simulations for model validation were carried out according
to what is described in the Simulation Methods Section.
Simulations were done by maximizing for lysine production
and constraining biomass production.

Table II. Statistics for the genome scale model.
Total genes in C. glutamicum (ORFs) 3,002
Reactions in genome scale model 446

Biochemical evidence 213

Clear function (functional annotation derived 209
from probable homologues)

Tentative function (functional annotation 22
derived from tentative homologues)

Putative function (added reactions to 2
complete network)

Active reactions during growth on glucose 199

Metabolites in genome scale model 411
Internal metabolites 356

External metabolites (metabolites involved in transport reactions) 55




Pentose Phosphate Pathway (PPP) Fluxes

The genome-scale metabolic model was validated against
published data on metabolic flux distributions during
various growth- and lysine production regimes, and with
different strains. The publications used for this comparison
were Kromer et al. (2004), Wittmann and Heinzle (2001),
Wittmann and Heinzle (2002), and Vallino and Stephano-
poulos (1993). The datasets Kromer et al. (2004), Wittmann
and Heinzle (2001), and Wittmann and Heinzle (2002) were
all based on batch cultivations where flux distributions were
determined using '’C-labelled glucose, whereas Vallino and
Stephanopoulos (1993) used bioreaction network analysis
for estimation of flux distributions. The individual datasets
for the three first references were selected to give the same
lysine yields (18%) and three different stains were represented
(ATCC 13287, ATCC 21253, and ATCC 21526, respec-
tively). The fourth dataset from Vallino and Stephanopoulos
(1993) was selected to have a data point at a higher lysine
yield (30%). All the flux data are from balanced growth
conditions, and details on how the fluxes were found are
given in the original articles. In silico simulations were
carried out yielding lysine conversion yields in the range of
the values found in the published data, in this case being
18% (mmol lysine (mmol glucose) ') and 30%, respec-
tively. In all the experiments used to validate the model
the biomass yields were lower than the in silico model (in
same order as above: 0.38, 0.33, 0.26, and 0.27 gbiomass
(gglucose) ') which could partly be explained by the fact
that by-products in all cases were produced, which were
not the case for simulations. Moreover, stoichiometric
parameters such as the P/O ratio and ATP yields and
maintenance requirements may change due to different
strain backgrounds and growth conditions. Although all
three references of Kromer et al. (2004), Wittmann and
Heinzle (2001), and Wittmann and Heinzle (2002) showed
lysine yields of 18%, some variation in fluxes from reference
to reference were seen (Fig. 1; three first fluxes from the top).
At the level of glucose-6-phosphate where this compound is
converted either towards the pentose phosphate pathway
(PPP) or the glycolysis a 12% absolute difference was seen
(59-71% towards PPP) between the fluxes in the experi-
ments. The in silico model predicted a 61% flux towards
PPP at this split, which correlated well with two of the
experiments (Fig. 1) (Kromer et al., 2004; Wittmann and
Heinzle, 2002), whereas the flux was higher (71%) for the
data of Wittmann and Heinzle (2001) (Fig. 1). For the three
experiments the tricarboxyic acid (TCA)-flux ranged from
46% to 68% whereas the model simulated value was 51%
(Fig. 1).

When simulations were carried out fitting the data of
Vallino and Stephanopoulos (1993) (Fig. 1), a higher flux
through the PPP was seen for the model (84%) than it was
the case for literature values (69%). Instead Vallino and
Stephanopoulos (1993) saw a higher flux through the TCA
(46%) when compared to the in silico model (36%). Instead
the anaplerotic flux from pyruvate/phosphoenolpyruvate

into oxaloacetate was higher for the model (48%) than
for the data of Vallino and Stephanopoulos (1993) (41%).
Although differences were seen between the published data
and the in silico model, fluxes were all in the same range,
and coherence between experimental data and model data
could be recognized.

Data from Vallino and Stephanopoulos (1993) were taken
at early exponential phase, just as lysine synthesis had
initiated after the depletion of threonine, and with a high
growth rate. Looking at data from the same reference for late
exponential phase, the difference between model predictions
and observed values were bigger (data not shown), even
though lysine yields were only marginally changed. The
PPP-flux decreased to 41% and the TCA-flux increased to
70% (Vallino and Stephanopoulos, 1993). The change in
fluxes was thought to be due to a decrease in growth rate,
which were followed by ATP excess (Vallino and Stepha-
nopoulos, 1993). The excess ATP needed to be consumed,
that is, through futile cycles, which lead to a redirection
of carbon from the PPP towards the TCA cycle due to
biological regulatory issues. Such changes in metabolism
due to biochemical regulation cannot be predicted by the
model, since it doesn’t take biological and biochemical
regulations into account.

Glycolysis Fluxes

Model flux values through the glycolysis were in general
consistent with observed experimental values. A higher
drain of carbon from glycolysis was seen in data from
Kromer et al. (2004) when compared to model values and
other experimental values. This can partly be explained by
by-product formation, where significant amounts of extra-
cellular glycerol and dehydroxyacetone phosphate were
observed (Kromer et al., 2004).

Fluxes Through the TCA and Around the Anaplerotic Node

At the level of phospoenolpyruvate and pyruvate,
C. glutamicum possesses a number of reactions for the
interconversion between glycolytic C; (pyruvate and
phosphoenolpyruvate) and C, metabolites of the TCA cycle
(oxaloacetate and malate). The importance of a high
anaplerotic netflux for providing sufficient amounts of
oxaloacetate for lysine production has been seen in nume-
rous experiments (Fig. 2; gray line), and this relationship
was also seen for the genome scale model (Fig. 2; black line).
However, it was seen that the anaplerotic netflux was higher
for the in silico model than what was observed for the
experimental work (Fig. 2). The reason for this is partly
due to a higher TCA-flux for the experimental work than for
the in silico data, which will be discussed below. Comparable
anaplerotic netfluxes between experimental data and simu-
lations were observed for the data in Figure 1. When the
lysine production was low (18%) an anaplerotic netflux
around 40% was seen. However, for the data of the higher
lysine yields (30%) a higher anaplerotic flux for the
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simulated data was seen compared to the experimental data
(41% for the experiment and 48% for the model) (Fig. 1)
which was in agreement with the more general observations
from literature (Fig. 2).

Relationship Between PPP- and TCA-Fluxes During
Lysine Production

It is known that the relationship between the TCA and
the PPP is important for lysine production since a high
reaction rate of the PPP is necessary to support NADPH
generation when lysine synthesis is high. A tendency for
this correlation can be seen from experimental data from
literature when TCA- and PPP-fluxes at different lysine
yields are compared (Fig. 3; symbols), a correlation which
have also been suggested by Kelle et al. (2005). Such a
correlation is also predicted by the model (Fig. 3; lines). In
general the TCA-flux was higher for the experimental values
when compared to the model, and the PPP-fluxes for the
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Figure 3. Flux through the TCA cycle and the Pentose phosphate pathway (PPP)
at different lysine conversion yields. Black line: PPP flux for in silico organism; Gray
line TCA flux for in silico organism. Open symbols are PPP fluxes and filled symbols are
TCA fluxes from experimental metabolic flux analysis from different references.
Squares: Wittmann and Heinzle (2002); diamonds: Marx et al. (1999); Triangles: Vallino
et al. (1993); Circles: Marx et al. (1997); Crosses: PPP data from Sonntag et al. (1995).

experimental data presented here were in most cases lower
than values for the corresponding in silico simulations. The
reason for the generally lower TCA-fluxes for the in silico
model when compared to experimental data was the higher
anaplerotic netflux, which from a stoichiometric point of
view is optimal for lysine production. The in silico model
will per definition chose this pathway which may not be the
case in reality, where biological regulation will affect the
operation of the biological network.

A bend of both the TCA-flux and the PPP-flux curves
were seen for the in silico flux data when lysine yield
exceeded 55% (Fig. 3). At this point a flattening of the curves
was observed (the TCA-flux decreased at a lower rate and the
PPP-flux increased at a lower rate). This metabolic change is
discussed further in the next section. Some of the differences
in flux distributions between the experiments mentioned
above can probably be explained by different strain
backgrounds, and different cultivation conditions.

Maximizing for Lysine Production

Simulations for lysine production were done by maximizing
for lysine production as the objective function, and con-
straining biomass production at different levels (see text for
details). Simulations were carried out according to what is
described in the Simulation Methods Section.

Negative Effect of ATP Excess on Lysine Production

The maximum lysine yields were found constraining the
biomass yields at different levels using the genome-scale
model (Figs. 4A and 5A). The model predicted a maximum
lysine yield of 75% when no biomass was produced
(Figs. 4A and 5A), which is the maximum theoretical value
for this organism (Stephanopoulos and Vallino, 1991). As
biomass synthesis increased towards the maximum, lysine
yields decreased (Figs. 4A and 5A). The decrease observed
was not linear as a bend of the curve was observed when the
lysine yield was around 55%, and Y-values were 20%,
corresponding to a decreasing Yy,-value: less lysine was
produced per cell unit (Fig. 4A). Also when plotting the
TCA- and PPP-flux data versus the lysine yield, a bend is
observed at a yield of 55% (Fig. 3). This shift in the central
metabolism was investigated, and it was found that the
change was due to a change in ATP availability, where the
regime was changed from an ATP limiting condition to an
ATP excess condition. During the synthesis of lysine in
C. glutamicum, a net ATP-production is seen. ATP is
consumed for biomass related reactions, however when the
ATP produced during lysine production exceeds the ATP
demand for biomass synthesis, ATP is in excess. The way the
model copes with this, is to burn ATP in a number of futile
cycles, of which an example can be recognized in Figure 5A,
bottom flux, where a futile cycle between the Cs-pool
(pyruvate) and the C,-pool (oxaloacetate) can be recognized
with the net reaction of ATP — AMP + Pi + Pi. This change
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from ATP limitation to ATP excess changes the regime
and hence can explain the changes observed in Figures 3
and 5A.

Split in the Lysine Synthetic Pathway and Its Effect
on Lysine Yield

In the lysine synthesis pathway of C. glutamicum two
pathways are possible. Either the direct dehydrogenase
variant (ddh), or the succinylase variant which involves four
reactions (Schrumpf et al., 1991). When using the genome-
scale model for maximizing for lysine production the
dehydrogenase variant is always preferred. This is due to the
fact that the succinylase variant consumes the intermediate
succinyl-CoA, which is an intermediate of the TCA cycle,
requiring this to be active during lysine synthesis, which is
not the case when the dehydrogenase variant is used. The
exclusive use of the dehydrogenase variant is however far
from reality based on experimental data, which shows
that both variants most often are used at different ratios.
Experiments have shown that the ratio between the two
variants varies between a ratio higher than 2:3 for the
succinylase variant with values ranging from 67-68%
(Sonntag et al., 1993) to 72-89% (Wittmann and Heinzle,
2002), and with the dehydrogenase variant being the
dominant pathway with values of 63% (Wittmann and
Heinzle, 2001) using this pathway. The flux ratio between
the two variants was even shown to change through a
fermentation starting with a 72% flux through the
dehydrogenase variant, decreasing to around zero at the
end of the fermentation (Sonntag et al., 1993). This
difference in the ratio of these two pathways was also seen
for the experiments selected for the validation (Fig. 1).
Either the dehydrogenase variant was used alone (Fig. 1;
top), or a combination of the dehydrogenase variant and
the succinyl variant with different ratios was seen (Fig. 1;
2nd and 3rd value from the top). As mentioned earlier a
significant difference was seen between the TCA-fluxes for
the experiments shown in Figure 1. In addition it can be seen
that for the first three experiments (Kromer et al., 2004;
Wittmann and Heinzle, 2001, 2002), the flux through the
TCA cycle and the route which was used through the lysine
pathway (dehydrogenase variant or succinylase variant)
correlated, so when a high flux through the succinylase
variant was seen, a higher TCA-flux could be observed. This
observation may explain some of the differences seen
between the TCA-fluxes and the anaplerotic netfluxes
(Fig. 2). Based on these observations it was considered
relevant to make simulations constraining the dehydrogen-
ase variant to zero, in order to investigate the effect of this
pathway on lysine yields. From these simulations it was seen
that the maximum lysine yield dropped to 57%, when no
biomass was produced (Fig. 5B). The simulation results
showed that as the carbon demand for biomass production
was increased, the difference in lysine yields decreased, and
at Yy, values higher than 40% (gbiomass (g glucose) ') the
maximum theoretical lysine yields were only marginally

different, with the dehydrogenase variant being the most
efficient pathway (Fig. 4A and B). At high growth rate the
TCA activity required for biomass synthesis was sufficient to
produce succinyl-CoA for lysine production via the succinyl
branch. The succinylase variant of the lysine synthetic
pathway is competing for succinylase-CoA with the TCA
reaction succinyl-CoA synthease converting succinyl-CoA
to succinate with the formation of an ATP. The marginally
higher lysine yield for the dehydrogenase variant during
high biomass formation could be explained by the missing
ATP from the succinyl-CoA synthease reaction. Further-
more, it was seen that the decrease in the maximum lysine
yield was due to the requirement for a higher activity of the
TCA to support lysine synthesis with succinyl-CoA (Fig. 5).
As a consequence more CO, was produced and carbon was
lost. For simulations where the biomass formation was
constrained to zero, the flux through the PPP was signi-
ficantly lower (86%) for the ddh-negative strain (Fig. 5B),
when compared to simulations where the dehydrogenase
variant was used (150%) (Fig. 5A), and for the latter a
cycling of the PPP was seen. The loss in carbon is due to the
fact that the PPP is more efficient in NADPH generation
(2 NADPH per CO,) than the TCA cycle (1 NADPH
per CO,). If the efficiency of NADPH generation for the PPP
was set to 1 mol of NADPH per CO,, the maximum lysine
yield was found to be 57% as it was the case for the ddh-
negative in silico strain (data not shown), indicating that the
difference seen on the maximum yield between the two
strains could be explained entirely by the increased activity
of the TCA cycle. For the ddh-negative in silico strain a bend
of the curve was seen (Fig. 4B; gray line), as it was observed
for simulations using the dehydrogenase branch, although
the bend was seen earlier. The explanation for this bend was
however different. In the case of the ddh-negative strain it
was due to a limitation of succinyl-CoA, and not related to
ATP excess as it was the case where the dehydrogenase
variant was exclusively used. Based on these results, the
ddh-gene looks like a promising target for overexpression by
metabolic engineering. ddh has already been investigated as
a potential bottleneck in lysine production. The results have
been inconsistent since both positive effects (Schrumpf
etal., 1991) (two to fivefold decrease in lysine accumulation
when ddh was knocked out) and negative effects (Eggeling
et al., 1998) (10-30% decrease by up-regulation of ddh) on
lysine production by altering the flux through this pathway
have been seen. For the latter no growth rate was reported
for the ddh-up-regulated strain. However, for the parental
strain a specific growth rate of 0.27 h™" was reported. If it is
assumed that the ddh-up-regulated strain had the same
specific growth rate it is possible that TCA activity was
sufficient to support the succinylase variant with succinyl-
CoA, hence abolishing the potential positive effect of the
genetic manipulation. Based on the reported simulations
and the experimental work done so far on this target it
would be interesting to investigate this pathway more
intensively, since there is—from a theoretical point of
view—a large potential for improving lysine production, at
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least when we are getting closer to the theoretical maximum
for this organism.

NADPH- or NADH-Dependent Glutamate
Dehydrogenase

The simulation experiments comparing two different
glutamate dehydrogenases were carried out according to
what is described in the Simulation Methods Section, except
that the NADPH-dependent glutamate dehydrogenase
(gnd) was replaced with an NADH-dependent glutamate
dehydrogenase in some cases. The objective function used
was maximization for lysine production and biomass was
constrained to different levels as described in the text.

Marginal Improvement in Lysine Production, But Significant
Redistribution of Central Carbon Metabolis, as an Effect of
NADH-Dependent Glutamate Dehydrogenase

For the synthesis of one mole of lysine four molecules of
NADPH is consumed. For this reason the NADPH supply in
C. glutamicum has received a lot of attention. Marx et al.
(1999) addressed this challenge by replacing the NADPH-
dependent glutamate dehydrogenase (gdh) with an NADH-
dependent gdh. However, this change in the metabolism of
the organism did not result in improved lysine production.
Instead significant redistribution of the central metabolism
was observed, consequently leading to increased biomass
production and lower lysine yield (Marx et al., 1999). The
study made by Marx et al. (1999) was used as a case study for
the genome-scale model.

Simulation experiments were carried out replacing the
NADPH-dependent gdh-reaction with an NADH-depen-
dent gdh-reaction, and the results were compared to “wild
type” simulations with an NADPH-dependent gdh-reaction.
Simulation data were further compared to experimental
data.

Simulation experiment data showed general higher lysine
production with the NADH-dependent gdh. However, the
effect was only marginal when the biomass yield exceeded
Y,,-values of about 0.15 gbiomass (g glucose) ' consumed
(Fig. 6), which is typically the case in real fermentations. The
maximum theoretical yield was increased to 80% (Fig. 6). As
it was seen in the work of Marx et al. (1999), the model
predicted a higher lysine yield (45%: Fig. 7A) for the in silico
strain carrying the NADPH dependent gdh-reaction, than for
the strain substituted with the NADH-dependent gdh-gene
(39%: Fig. 7B) when the biomass formation was constrained
at the same values as reported in the experiments (0.28 and
0.33 gbiomass (gglucose) ' for the NADPH-dependent
strain and NADH-dependent strain, respectively). However,
the difference was lower than it was seen in the experimental
work (30% for the NADPH-dependent strain and 18% for
the NADH-dependent strain).
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Figure 6. Simulation results maximizing for lysine production constraining bio-
mass formation at different levels. Results shown are in silico strains (Black line:
NADPH dependent glutamate dehydrogenase (gdh); Gray line: NADH dependent gdh)
and experimental data from Marx et al. (1999) (square: NADPH-dependent gdh;
Triangle: NADH-dependent gdh).

To eliminate the effect of the different biomass formation
that was seen in the experimental work, simulations were
carried out constraining the biomass at the same rate (0.30 g
biomass (g glucose) ' consumed). The result gave a higher
lysine yield (43%) for the NADH dependent strain when
compared to the NADPH dependent strain (42%). This
marginal increase was due to a small increase in Y, for the
NADH-dependent strain compared to the NADPH-depen-
dent gdh-strain, resulting in more carbon being available for
lysine synthesis. The simulation data showed a decreased
NADPH generation for the in silico strain containing
the NADH-dependent gdh when compared to the NADPH-
dependent strain (161% and 222%, respectively). As expected
the moles of NADPH consumed per mole of lysine produced
was lowered significantly for the NADH-dependent strain.
The minimum theoretical requirement for NADPH was
lowered from 4.0 to 3.0 (NADPH per lysine) in the NADH-
dependent gdh strain (without any biomass production)
when compared to the strain with an NADPH-dependent
gdh (data not shown). Simulations using the same biomass
production burdens (0.30 g biomass g glucose ' consumed)
also showed a lower demand for NADPH. The strain with an
NADH dependent gdh used 3.8 mol of NADPH per mole
of lysine produced, whereas the strain with the NADPH-
dependent gdh used 5.6 mol of NADPH per mole of lysine.
The experimental data from Marx et al. (1999) showed
a higher NADPH demand per mole of lysine produced
(7.7 mol per lysine and 6.6 mol per lysine for the NADH-
dependent strain and NADPH-dependent strain, respec-
tively). These higher values were due to the relatively low
lysine yields as compared to simulations, and the lower
NADPH demand for the NADPH-dependent strain can be
explained by the lower flux of metabolites towards biomass
formation as compared to the NADH-dependent strain.

In conclusion a significant redistribution of the central
metabolism of the in silico organism is observed as an effect
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of the substitution of the NADPH-dependent gnd with
an NADH-dependent gnd. Although the model is unable
to predict the precise change in phenotypic behavior
(Increased growth and absolute change in carbon flux
distributions), the simulation results are surprisingly
consistent with the results of Marx et al. (1999). In addition
the model predicts a higher lysine production with the
NADH-dependent gdh strain. However, the improvement
is only marginal when the biomass yield exceeds 15% of
glucose consumption and an improvement on lysine yield is
only seen when this is already high (Y, >55%) (Fig. 6).
That NADPH is not limiting on lysine production, and that
the central carbon metabolism is able to adjust to NADPH
requirements of the cell is now generally accepted based on
experimental studies on the regulation of the PPP (Moritz
et al., 2000; Vallino and Stephanopoulos, 1994). It would
however be interesting to see if this is also the case when
lysine yields approaches the theoretical maximum, and some
recent results have in fact indicated that this is the case, as it

was seen by Becker et al. (2005) where genetic manipulations
leading to an increased PPP-flux resulted in increased lysine
production.

Growth of C. glutamicum on Lactate and Acetate

Simulations for growth on lactate and acetic acid were
conducted by maximizing for growth as the objective
function. Simulations were carried out according to what is
described in the Simulation Methods Section, except no
constraints were made on the two reactions catalyzed by
malic enzyme and oxaloacetate decarboxylase. In some cases
constraints were made on individual reactions, which are
described in the text.

C. glutamicum is able to grow on various substrates
including a number of organic acids such as lactate
(Cocaign-Bousquet and Lindley, 1995) and acetate
(Wendisch et al., 2000). Simulations were carried out using
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acetate and lactate as carbon source, and the results were
compared to results found in literature.

Lactate as Carbon Source

Simulations maximizing for growth was carried out when
lactate was used as a carbon source (Fig. 8). As expected
the in silico organism could utilize lactate as a carbon
source. The maximum biomass yield on substrate was
0.54 gbiomass (glactate) ', which was lower than when
glucose was used as a substrate (0.61 g biomass (g glucose) ™).
The difference was due to the lower efficiency in ATP- and
NADPH synthesis, when the gluconogenetic pathways were
included in the model. Experimental data for a carbon limited
chemostat showed a biomass yield of 0.36 gbiomass
(glactate) ' (D=0.17 h™') whereas the yield increased as
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Figure 8. Metabolic flux distribution of C. glutamicum growing on lactate and
maximizing for growth. All fluxes are expressed as molar percentage of the specific
uptake rate of lactate. Numbers in red ovals are taken from Cocaign-Bousquet and
Lindley (1995). Upper flux .« =0.17 h~"; lower flux 1« = 0.35 h—". Numbers in gray boxes
are results from simulations with in silico organism. LAC,,: extracellular lactate; PYRg,:
extracellular pyruvate. Other abbreviations see Figure 1. [Color figure can be seen in
the online version of this article, available at www.interscience.wiley.com.]
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dilution rate was increased (Cocaign-Bousquet and Lindley,
1995). It needs to be emphasized that in the biomass yield
calculations made by Cocaign-Bousquet and Lindley (1995)
the pyruvate produced as a byproduct was subtracted
from the substrate carbon, so the biomass yield on lactate
including pyruvate production in reality was lower.
For a dilution rate of 0.28 h™' the biomass yield was
0.42 gbiomass (glactate) "' (0.3 gbiomass (glactate) ' when
pyruvate production was taken into account). At this
dilution rate the chemostat was not carbon limited, and an
overflow of pyruvate was seen resulting in excretion of
this compound. At the organisms maximum growth rate
(u="0.35h"") a biomass yield of 0.61 g biomass (glactate) '
(0.4 gbiomass (glactate) ' when pyruvate production was
included) was seen, and the efflux of pyruvate was further
increased. When comparing experimental data with
simulation data, it was seen that the model data (Fig. 8;
gray boxes) was comparable to the data for the carbon-
limited chemostat with ©=0.17 h™! (Fig. 8; red ovals 1st
flux from the top), whereas for data for the maximum
growth rate (= 0.35 h™ "), fluxes around phosphoenolpyr-
uvate, pyruvate, oxaloacetate and malate were significantly
different (Fig. 8; red ovals 2nd flux from top). In addition to
this an efflux of pyruvate (21% of lactate uptake), and a
reduced flux through the TCA was observed (Cocaign-
Bousquet and Lindley, 1995). Looking more into details of
the experimental data at high growth rates, and hence high
substrate uptake rates, growth rate limitations within the
central metabolism were observed (Cocaign-Bousquet and
Lindley, 1995). During these conditions some enzymes
became rate limiting, and the organism found alternative
pathways which could not be predicted by the model.
One major difference between the model and the
experimental data was the operation of an alternative
NADPH supply by a cyclic operation of pyruvate carboxy-
lase, coupled to a reversed flux through malate dehydro-
genase, converting oxaloacetate to malate, and then back to
pyruvate using malic enzyme. The net result of this cycling
was the generation of an NADPH using an ATP and an
NADH. This behavior was not predicted by the in silico
model. However, when simulations were carried out
constraining the flow of pyruvate limiting the flow towards
Ac-CoA as it was seen in the data of Cocaign-Bousquet and
Lindley (1995), the same flux patterns could be recognized
(data not shown). The maximum biomass yield was
decreased to 0.52 gbiomass (glactate) ' under these con-
ditions. The model could not predict the behavior observed
in the experiment, because this flux distribution is not the
most stoichiometrically efficient for the in silico organism.
However, in silico model predictions were close to the
results obtained in the work of Cocaign-Bousquet and
Lindley (1995) when no rate limitations were seen.

Acetate as Carbon Source

Maximization for growth was simulated during growth on
either acetate as single carbon source (Fig. 9), or during
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Figure 9. Metabolic flux distribution of C. glutamicum growing on acetate and
maximizing for growth. All fluxes are expressed as molar percentage of the specific
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Numbers in gray boxes are results from model simulations. AC,,: extracellular acetate.
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simultaneous acetate and glucose consumption (data not
shown). The maximum biomass yield on acetate
(0.48 gbiomass (gacetate) ') was found to be lower than
on glucose (0.61 gbiomass (g glucose) '), and the glyoxylate
shunt was observed to be active. Both observations were
consistent with experimental data (Wendisch et al., 2000),
although biomass yields for the experimental data were
lower being 0.24 gbiomass (gacetate) ' and 0.34 gbiomass
(gglucose) ' for acetate and glucose, respectively.

It was observed that no growth was possible for the in
silico organism when the glyoxylate shunt was shut down
(data not shown), which was also observed by Wendisch
et al. (2000). During optimal growth the model predicted a
flux through the glyoxylate cycle corresponding to 25%
of the substrate uptake (Fig. 9). This flux was 18% for

the experimental data of Wendisch et al. (2000). Further
investigation of the glyoxylate shunt branch point showed,
that when the carbon flux through the glyoxylate shunt was
constrained to 18% of the acetate uptake, the biomass
yield was lowered to 0.35 gbiomass (gacetate) ' (data not
shown). When the carbon flux through the glyoxylate shunt
was increased by constraining this flux, a decrease in the
biomass yield was seen (data not shown), indicating that the
carbon flux predicted by the model is truly a maximum for
the in silico organism.

The model predicted that the flux through the PPP was
entirely omitted, and NADPH needed for biomass was solely
generated by the isocitrate dehydrogenase reaction, whereas
the data of Wendisch et al. (2000) showed a low flux (4%)
through the PPP. When PPP-flux was constrained to 4%
simultaneously with the glyoxylate shunt constrain above,
the biomass yield further decreased to 0.33 gbiomass
(gacetate) "'. The TCA-flux was higher for the experimental
data as it was the case for the model.

Simulations for co-metabolism of acetate and glucose
were carried out (data not shown). Wendisch et al. (2000)
found that the glyoxylate cycle was active during co-
metabolism of these two substrates, which was a surprise
since this was not seen for E. coli cells grown under the same
conditions (Walsh and Koshland, 1985), and since this
pathway is not essential when glucose is present. The model
predicted the same behavior when substrate uptake was
constrained at the same levels (data not shown). However,
when the glyoxylate cycle was removed from the model the
growth yield of the organism was not altered (data not
shown), which in practice means that from a stoichiometric
point of view it is insignificant which route is used under the
given conditions. The preferred use of the glyoxylate route in
Wendisch et al. (2000) is probably due to acetate specific
induction, which earlier has been seen for C. glutamicum
during these conditions (Gerstmeier et al., 2003). Anaplero-
tic fluxes were higher for the experimental data than for the
model, and a significant cycling between C3 and C4 was seen
(Fig. 9) resulting in an anaplerotic netflux of 54% towards
the pyruvate/phosphoenolpyruvate pool which was higher
than for the model (17%) (Fig. 9).

Conclusions

A validated metabolic network of C. glutamicum ATCC
13032 was constructed, and by using flux-balance analysis
the in silico model was able to predict metabolic fluxes
during lysine production and growth under various
conditions, which were consistent with experimental values.
This work also showed that genome scale metabolic model
simulations needs to be combined with data from other
sources, that is, flux data or transciptomic data, in order to
improve the prediction power of the model. The model was
able to predict potential targets for metabolic engineering
for improving lysine production in C. glutamicum, and
hence serves as a useful tool for future directing of metabolic
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engineering strategies resulting in improved lysine produc-
tion. The model also serves as an extensive compendium
on C. glutamicum metabolism, and it is our hope that by
combining the model with datasets from high throughput
experimental techniques such as transcriptomics, fluxomics
and metabolomics, the prediction power of the model can be
further improved.

Ana Paula Oliveira is acknowledged for help and guidance during
model construction and for introducing the Biooptv4.9 software.
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